On Initial-Boundary Value Problems for Some One Dimensional Quasilinear Wave Equations: Global Existence, Scattering and Rigidity

被引:0
作者
Dongbing Zha
Xinxin Xue
机构
[1] Donghua University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
One dimensional quasilinear wave equations; Initial-boundary value problem; Global existence; Scattering; Rigidity; 35L05; 35L72;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial-boundary value problem on R+×R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{+}\times \mathbb {R}^{+}$$\end{document} for some one dimensional systems of quasilinear wave equations with null conditions. We first prove that for homogeneous Dirichlet boundary values and sufficiently small initial data, classical solutions always globally exist. Then we show that the global solution will scatter, i.e., it will converge to some solution of one dimensional linear wave equations as time tends to infinity, in the energy sense. Finally we prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically.
引用
收藏
相关论文
共 25 条
[1]  
Alinhac S(2001)The null condition for quasilinear wave equations in two space dimensions. I Invent. Math. 145 597-618
[2]  
Christodoulou D(1986)Global solutions of nonlinear hyperbolic equations for small initial data Commun. Pure Appl. Math. 39 267-282
[3]  
Keel M(2002)Global existence for a quasilinear wave equation outside of star-shaped domains J. Funct. Anal. 189 155-226
[4]  
Smith HF(2021)Asymptotic behavior of global solutions to one-dimension quasilinear wave equations Dyn. Partial Differ. Equ. 18 81-100
[5]  
Sogge CD(2018)Global smooth solutions of 3-D null-form wave equations in exterior domains with Neumann boundary conditions J. Differ. Equ. 264 5577-5628
[6]  
Li M(2021)On the rigidity from infinity for nonlinear Alfvén waves J. Differ. Equ. 283 163-215
[7]  
Li J(2004)A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time Proc. Am. Math. Soc. 132 1095-1102
[8]  
Yin H(2010)The global stability of Minkowski space–time in harmonic gauge Ann. Math. (2) 171 1401-1477
[9]  
Li M(2018)On one-dimension semi-linear wave equations with null conditions Adv. Math. 329 174-188
[10]  
Yu P(2005)Hyperbolic trapped rays and global existence of quasilinear wave equations Invent. Math. 159 75-117