Properties of Codes from Difference Sets in 2-Groups

被引:0
作者
Deirdre Longacher Smeltzer
机构
[1] University of St. Thomas,Department of Mathematics
来源
Designs, Codes and Cryptography | 1999年 / 16卷
关键词
difference sets; 2-groups; bent functions; Reed-Muller codes; divisor (of a code);
D O I
暂无
中图分类号
学科分类号
摘要
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_2 $$ \end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}(1,2s + 2)$$ \end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 11 条
[1]  
Berman S. D.(1967)On the theory of group codes Cybernetics 3 25-31
[2]  
Bonisoli A.(1983)Every equidistant linear code is a sequence of dual Hamming codes ARS Combinatoria 18 181-186
[3]  
Charpin P.(1990)Codes Cycliques étendus affines-invariants et antichaines d'un ensemble partiellement ordonné Discrete Math 80 229-247
[4]  
Dillon J. F.(1990)Difference sets in 2-groups Contemp. Math. III 65-72
[5]  
Jennings S. A.(1941)The structure of a group ring of a Trans. of Amer. Math. Soc. 50 175-185
[6]  
Landrock P.(1992)-group over a modular field Designs, Codes and Cryptography 2 273-285
[7]  
Manz O.(1973)Classical codes as ideals in group algebras J. Comb. Theory, Series A 15 1-10
[8]  
McFarland R. L.(1965)A family of noncyclic difference sets Pacific J. Math. 15 319-346
[9]  
Turyn R. J.(1994)Character sums and difference sets Discrete Math. 131 311-323
[10]  
Ward H. N.(1990)Divisors of codes of Reed-Muller type Discrete Math. 83 315-326