共 50 条
Properties of Codes from Difference Sets in 2-Groups
被引:0
|作者:
Deirdre Longacher Smeltzer
机构:
[1] University of St. Thomas,Department of Mathematics
来源:
Designs, Codes and Cryptography
|
1999年
/
16卷
关键词:
difference sets;
2-groups;
bent functions;
Reed-Muller codes;
divisor (of a code);
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{D}$$
\end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{D}$$
\end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{Z}_2 $$
\end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{R}(1,2s + 2)$$
\end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文