Properties of Codes from Difference Sets in 2-Groups

被引:0
|
作者
Deirdre Longacher Smeltzer
机构
[1] University of St. Thomas,Department of Mathematics
来源
Designs, Codes and Cryptography | 1999年 / 16卷
关键词
difference sets; 2-groups; bent functions; Reed-Muller codes; divisor (of a code);
D O I
暂无
中图分类号
学科分类号
摘要
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_2 $$ \end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}(1,2s + 2)$$ \end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 50 条
  • [1] Properties of codes from difference sets in 2-groups
    Smeltzer, DL
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (03) : 291 - 306
  • [2] Using the Simplex Code to Construct Relative Difference Sets in 2-groups
    Davis J.A.
    Sehgal S.K.
    Designs, Codes and Cryptography, 1997, 11 (3) : 267 - 277
  • [3] Automorphism groups of 2-groups
    Eick, Bettina
    JOURNAL OF ALGEBRA, 2006, 300 (01) : 91 - 101
  • [4] On Pseudofunctors Sending Groups to 2-Groups
    Cigoli, Alan S. S.
    Mantovani, Sandra
    Metere, Giuseppe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [5] On Pseudofunctors Sending Groups to 2-Groups
    Alan S. Cigoli
    Sandra Mantovani
    Giuseppe Metere
    Mediterranean Journal of Mathematics, 2023, 20
  • [6] Blocks whose defect groups are Suzuki 2-groups
    Eaton, Charles W.
    JOURNAL OF ALGEBRA, 2025, 664 : 498 - 513
  • [7] Difference sets and three-weight linear codes from trinomials
    Ahmadi, Omran
    Shafaeiabr, Masoud
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [8] FUSION SYSTEMS ON BICYCLIC 2-GROUPS
    Sambale, Benjamin
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (04) : 989 - 1018
  • [9] On generic polynomials for the modular 2-groups
    Rikuna, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2002, 78 (03) : 33 - 35
  • [10] ON B(n, k) 2-GROUPS
    Wang, Huiqun
    Tan, Yilan
    Moss, Tyson
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (11) : 4655 - 4659