The Lp-Lq analog of Morgan’s theorem on exponential solvable Lie groups

被引:0
作者
F. Abdelmoula
A. Baklouti
机构
[1] Faculty of Sciences at Sfax,Department of Mathematics
来源
Mathematical Notes | 2010年 / 88卷
关键词
Morgan’s uncertainty principle; Plancherel’s formula; nilpotent Lie group; Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define an analog of the Lp-Lq Morgan’s uncertainty principle for any exponential solvable Lie group G (p, q ∈ [1,+∞]). When G is nilpotent and has a noncompact center, the proof of such an analog is given for p, q ∈ [2,+∞], extending the earlier settings ([2], [4] and [5]). Such a result is only known for some particular restrictive cases so far. We also prove the result for general exponential Lie groups with nontrivial center.
引用
收藏
页码:464 / 478
页数:14
相关论文
共 30 条
[1]  
Baklouti A.(2008)On Hardy’s uncertainty principle for connected nilpotent Lie groups Math. Z. 259 233-247
[2]  
Kaniuth E.(2008)On Theorems of Beurling and Cowling-Price for certain nilpotent Lie groups Bull. Sci. Math. 132 529-550
[3]  
Baklouti A.(2006)The Forum Math. 18 245-262
[4]  
Ben Salah N.(2004)- Contemporary Mathematics 363 39-52
[5]  
Baklouti A.(2003) version of Hardy’s Theorem on nilpotent Lie groups J. Funct. Anal. 199 508-520
[6]  
Ben Salah N.(2003)Some uncertainty principles on nilpotent Lie groups Russian J. Math. Phys. 10 1-16
[7]  
Baklouti A.(2000)Estimate of Pacific J. Math. 192 293-296
[8]  
Ben Salah N.(2005)-Fourier transform norm on nilpotent Lie groups Pacific J. Math. 219 101-142
[9]  
Smaoui K.(1976)Uncertainty principle and the Ann. scient. Éc. Norm. Sup., 4e série 9 107-144
[10]  
Baklouti A.(1933)- J. London Math. Soc. 8 227-231