On Malmquist type theorem of systems of complex difference equations

被引:0
|
作者
Jianjun Zhang
机构
[1] Jiangsu Second Normal University,Mathematics and Information Technology School
来源
Advances in Difference Equations | / 2015卷
关键词
systems of complex difference equations; meromorphic functions; Malmquist type theorem; functional equation;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to give the Malmquist type result of the meromorphic solutions of a system of complex difference equations of the following form: {∑λ1∈I1,μ1∈J1αλ1,μ1(z)(∏ν=1nf(z+cν)lλ1,ν∏ν=1ng(z+cν)mμ1,ν)=∑i=0pai(z)g(z)i∑j=0qbj(z)g(z)j,∑λ2∈I2,μ2∈J2βλ2,μ2(z)(∏ν=1nf(z+cν)lλ2,ν∏ν=1ng(z+cν)mμ2,ν)=∑k=0sdk(z)f(z)k∑l=0tel(z)f(z)l,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{ \textstyle\begin{array}{l} \sum_{\lambda_{1} \in I_{1}, \mu_{1}\in J_{1}}\alpha_{\lambda_{1}, \mu_{1}}(z) (\prod_{\nu=1}^{n}f(z+c_{\nu})^{l_{\lambda_{1}, \nu}}\prod_{\nu=1}^{n}g(z+c_{\nu})^{m_{\mu_{1}, \nu}} ) = \frac{\sum_{i=0}^{p}a_{i}(z)g(z)^{i} }{\sum_{j=0}^{q}b_{j}(z)g(z)^{j}}, \\ \sum_{\lambda_{2} \in I_{2}, \mu_{2}\in J_{2}}\beta_{\lambda_{2}, \mu_{2}}(z) (\prod_{\nu =1}^{n}f(z+c_{\nu})^{l_{\lambda_{2}, \nu}}\prod_{\nu=1}^{n}g(z+c_{\nu})^{m_{\mu_{2}, \nu}} ) = \frac{\sum_{k=0}^{s}d_{k}(z)f(z)^{k} }{\sum_{l=0}^{t}e_{l}(z)f(z)^{l}}, \end{array} \right . $$\end{document} where c1,c2,…,cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{1}, c_{2}, \ldots, c_{n}$\end{document} are distinct, nonzero complex numbers, the coefficients αλ1,μ1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_{\lambda_{1}, \mu_{1}}(z)$\end{document} (λ1∈I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1} \in I_{1}$\end{document}, μ1∈J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_{1}\in J_{1}$\end{document}), βλ2,μ2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta_{\lambda_{2}, \mu_{2}}(z)$\end{document} (λ2∈I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{2} \in I_{2}$\end{document}, μ2∈J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_{2}\in J_{2}$\end{document}), ai(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{i}(z)$\end{document} (i=0,1,…,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=0,1,\ldots, p$\end{document}), bj(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b_{j}(z)$\end{document} (j=0,1,…,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j=0,1,\ldots, q$\end{document}), dk(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{k}(z)$\end{document} (k=0,1,…,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=0,1,\ldots, s$\end{document}), and el(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e_{l}(z)$\end{document} (l=0,1,…,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l=0,1,\ldots, t$\end{document}) are small functions relative to f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)$\end{document} and g(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(z)$\end{document}, Ii={λi=(lλi,1,lλi,2,…,lλi,n)|lλi,ν∈N∪{0},ν=1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{i} = \{\lambda _{i}=(l_{\lambda_{i}, 1}, l_{\lambda_{i}, 2}, \ldots, l_{\lambda_{i},n})| l_{\lambda_{i}, \nu}\in{N} \cup\{0\},\nu= 1,2,\ldots,n\}$\end{document} (i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2$\end{document}) and Jj={μj=(mμj,1,mμj,2,…,mμj,n)|mμj,ν∈N∪{0},ν=1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J_{j} = \{\mu_{j}=(m_{\mu_{j}, 1}, m_{\mu_{j}, 2}, \ldots, m_{\mu_{j},n})| m_{\mu_{j}, \nu}\in{N} \cup\{0\},\nu=1,2, \ldots,n\}$\end{document} (j=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j=1, 2$\end{document}) are finite index sets. The growth of meromorphic solutions of a related system of complex functional equations is also investigated.
引用
收藏
相关论文
共 50 条
  • [21] ON PROPERTIES OF MEROMORPHIC SOLUTIONS FOR COMPLEX DIFFERENCE EQUATION OF MALMQUIST TYPE
    Huang, Zhibo
    Chen, Zongxuan
    Li, Qian
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1141 - 1152
  • [22] Nonautonomous difference equations and a Perron-type theorem
    Barreira, Luis
    Valls, Claudia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (03): : 277 - 290
  • [23] A Perron-type theorem for nonautonomous difference equations
    Barreira, Luis
    Valls, Claudia
    NONLINEARITY, 2013, 26 (03) : 855 - 870
  • [24] ON MALMQUIST THEOREM OF ALGEBRAIC DIFFERENTIAL-EQUATIONS
    HE, YZ
    XIAO, XZ
    KEXUE TONGBAO, 1983, 28 (02): : 165 - 169
  • [25] Zero order meromorphic solutions of q-difference equations of Malmquist type
    Korhonen, Risto
    Zhang, Yueyang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [26] A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS
    Zhang, Jianjun
    Liao, Liangwen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (02) : 471 - 478
  • [27] A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS
    张建军
    廖良文
    Acta Mathematica Scientia(English Series), 2018, 38 (02) : 471 - 478
  • [28] A Malmquist-Yosida type of theorem for the second-order algebraic differential equations
    Liao, LW
    Su, WY
    Yang, CC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (01) : 63 - 71
  • [29] A KATZNELSON-TZAFRIRI TYPE THEOREM FOR DIFFERENCE EQUATIONS AND APPLICATIONS
    Nguyen Van Minh
    Matsunaga, Hideaki
    Nguyen Duc Huy
    Vu Trong Luong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (03) : 1105 - 1114
  • [30] Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables
    Li, Hong
    Zhang, Keyu
    Xu, Hongyan
    AIMS MATHEMATICS, 2021, 6 (11): : 11796 - 11814