A variant of Wigner’s functional equation

被引:0
作者
Aleksej Turnšek
机构
[1] University of Ljubljana,Faculty of Maritime Studies and Transport
[2] Physics and Mechanics,Institute of Mathematics
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
39B05; 46C05; 46C50; 47J05; Functional equation; Wigner’s theorem; quaternions; isometry;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize mappings between inner product spaces satisfying a certain pair of functional equations. As a consequence a short proof of Wigner’s theorem for real, complex or quaternionic inner spaces is presented.
引用
收藏
页码:949 / 956
页数:7
相关论文
共 50 条
  • [21] d'Alembert's other functional equation
    Ebanks, Bruce
    Stetkaer, Henrik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 319 - 349
  • [22] More about Wilson's functional equation
    Stetkaer, Henrik
    AEQUATIONES MATHEMATICAE, 2020, 94 (03) : 429 - 446
  • [23] Van Vleck’s functional equation for the sine
    Henrik Stetkær
    Aequationes mathematicae, 2016, 90 : 25 - 34
  • [24] Kannappan's functional equation on semigroups with involution
    Stetkaer, Henrik
    SEMIGROUP FORUM, 2017, 94 (01) : 17 - 30
  • [25] More about Wilson’s functional equation
    Henrik Stetkær
    Aequationes mathematicae, 2020, 94 : 429 - 446
  • [26] Kannappan’s functional equation on semigroups with involution
    Henrik Stetkær
    Semigroup Forum, 2017, 94 : 17 - 30
  • [27] On Wigner's theorem in complex smooth normed spaces
    Liu, Jiabin
    Huang, Xujian
    Wang, Shuming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (02)
  • [28] On Wigner's theorem in strictly convex normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 97 (3-4): : 393 - 401
  • [29] Generalising Wigner's theorem
    Sarbicki, Gniewomir
    Chruscinski, Dariusz
    Mozrzymas, Marek
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (30)
  • [30] Wilson's functional equation on monoids with involutive automorphisms
    Sabour, Kh.
    Fadli, B.
    Kabbaj, S.
    AEQUATIONES MATHEMATICAE, 2016, 90 (05) : 1001 - 1011