Kähler potential and ambiguities in 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs

被引:0
作者
Jaume Gomis
Nafiz Ishtiaque
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics
[2] University of Waterloo,undefined
关键词
Supersymmetric gauge theory; Extended Supersymmetry; Supergravity Models;
D O I
10.1007/JHEP04(2015)169
中图分类号
学科分类号
摘要
The partition function of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories on S4 computes the exact Kähler potential on the space of exactly marginal couplings [1]. We present a new elementary proof of this result using supersymmetry Ward identities. The partition function is a section rather than a function, and is subject to ambiguities coming from Kähler transformations acting on the Kähler potential. This ambiguity is realized by a local supergravity counterterm in the underlying SCFT. We provide an explicit construction of the Kähler ambiguity counterterm in the four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 off-shell supergravity theory that admits S4 as a supersymmetric background.
引用
收藏
相关论文
共 67 条
[11]  
Romo M(1993) equations, localization and exact chiral rings in 4d Phys. Lett. B 318 469-undefined
[12]  
Benini F(2011) = 2 SCFTs JHEP 06 114-undefined
[13]  
Cremonesi S(1981)Exact correlation functions in SU(2) Nucl. Phys. B 184 77-undefined
[14]  
Doroud N(2012) = 2 superconformal QCD JHEP 09 033-undefined
[15]  
Gomis J(2013)An Almost Simple Off-shell Version of SU(2) Poincaré Supergravity JHEP 10 218-undefined
[16]  
Le Floch B(1976)Naturalness versus supersymmetric nonrenormalization theorems Phys. Rev. Lett. 37 1669-undefined
[17]  
Lee S(1980)Rigid supersymmetric theories in curved superspace Nucl. Phys. B 167 186-undefined
[18]  
Doroud N(1979)Structure of N = 2 Supergravity Nucl. Phys. B 155 530-undefined
[19]  
Gomis J(1983)Seiberg-Witten theories on ellipsoids Nucl. Phys. B 219 143-undefined
[20]  
Baggio M(1980)Extended supersymmetry on curved spaces Nucl. Phys. B 173 175-undefined