Kähler potential and ambiguities in 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs

被引:0
作者
Jaume Gomis
Nafiz Ishtiaque
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics
[2] University of Waterloo,undefined
关键词
Supersymmetric gauge theory; Extended Supersymmetry; Supergravity Models;
D O I
10.1007/JHEP04(2015)169
中图分类号
学科分类号
摘要
The partition function of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories on S4 computes the exact Kähler potential on the space of exactly marginal couplings [1]. We present a new elementary proof of this result using supersymmetry Ward identities. The partition function is a section rather than a function, and is subject to ambiguities coming from Kähler transformations acting on the Kähler potential. This ambiguity is realized by a local supergravity counterterm in the underlying SCFT. We provide an explicit construction of the Kähler ambiguity counterterm in the four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 off-shell supergravity theory that admits S4 as a supersymmetric background.
引用
收藏
相关论文
共 67 条
[1]  
Gerchkovitz E(2014)Sphere partition functions and the Zamolodchikov metric JHEP 11 001-undefined
[2]  
Gomis J(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
[3]  
Komargodski Z(2013)Exact Kähler potential from gauge theory and mirror symmetry JHEP 04 019-undefined
[4]  
Pestun V(2014)Two-Sphere Partition Functions and Gromov-Witten Invariants Commun. Math. Phys. 325 1139-undefined
[5]  
Gomis J(2015)Partition Functions of Commun. Math. Phys. 334 1483-undefined
[6]  
Lee S(2013) = (2,2) Gauge Theories on S JHEP 05 093-undefined
[7]  
Jockers H(2013) and Vortices JHEP 1312 99-undefined
[8]  
Kumar V(2015)Exact results in D = 2 supersymmetric gauge theories JHEP 02 122-undefined
[9]  
Lapan JM(2014)Gauge theory dynamics and Kähler potential for Calabi-Yau complex moduli Phys. Rev. Lett. 113 251601-undefined
[10]  
Morrison DR(1981)tt Nucl. Phys. B 178 151-undefined