Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method

被引:2
作者
Emmanuel Leriche
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Laboratoire d’Ingénierie Numérique, Institut des Sciences de l’Energie, Section de Génie Mécanique, Faculté des Sciences et Techniques de l’Ingénieur
来源
Journal of Scientific Computing | 2006年 / 27卷
关键词
Chebyshev spectral method; direct numerical simulation; 3D lid-driven cavity;
D O I
暂无
中图分类号
学科分类号
摘要
Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier–Stokes equations in a cubical domain. The Projection-Diffusion method [Leriche and Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386–1410), Leriche et al. (2005, J. Sci. Comput., in press)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented
引用
收藏
页码:335 / 345
页数:10
相关论文
共 50 条
  • [41] Direct Numerical Simulation of Gas-Liquid Drag-Reducing Cavity Flow by the VOSET Method
    Wang, Yi
    Wang, Yan
    Cheng, Zhe
    POLYMERS, 2019, 11 (04)
  • [42] Hybrid pseudo-direct numerical simulation of high Rayleigh number flows up to 1011
    Nee, Alexander
    Chamkha, Ali J.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (14) : 7855 - 7864
  • [43] Hybrid pseudo-direct numerical simulation of high Rayleigh number flows up to 1011
    Alexander Nee
    Ali J. Chamkha
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 7855 - 7864
  • [44] Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation
    Watanabe, Tomoaki
    Zhang, Xinxian
    Nagata, Koji
    COMPUTERS & FLUIDS, 2019, 194
  • [45] A data-driven memory model for solving turbulent flows with the pseudo-direct numerical simulation method
    Larreteguy, Axel E.
    Gimenez, Juan M.
    Nigro, Norberto M.
    Sivori, Francisco M.
    Idelsohn, Sergio R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (01) : 44 - 80
  • [46] Direct numerical simulation of turbulent free-surface high Prandtl number fluid flows in fusion reactors
    Kunugi, T
    Satake, S
    Sagara, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 464 (1-3) : 165 - 171
  • [47] A high-order photon Monte Carlo method for radiative transfer in direct numerical simulation
    Wu, Y.
    Modest, M. F.
    Haworth, D. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) : 898 - 922
  • [48] Direct numerical simulation of natural convection in a square cavity at high Rayleigh numbers via the Lagrange interpolating polynomial scheme
    Prasopchingchana, Uthai
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 172
  • [49] Simulation of turbulent bubbly pipe flow with high density ratio and high reynolds number by using the lattice boltzmann method and a multi-phase field model
    Sitompul, Yos Panagaman
    Aoki, Takayuki
    Takaki, Tomohiro
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 134
  • [50] Investigation of Entrainment and its Effect on Flame Stabilization in a Turbulent High Karlovitz Number Premixed Jet Flame using Direct Numerical Simulation
    Jiahao Ren
    Haiou Wang
    Kun Luo
    Jianren Fan
    Flow, Turbulence and Combustion, 2024, 112 : 537 - 556