Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method

被引:2
作者
Emmanuel Leriche
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Laboratoire d’Ingénierie Numérique, Institut des Sciences de l’Energie, Section de Génie Mécanique, Faculté des Sciences et Techniques de l’Ingénieur
来源
Journal of Scientific Computing | 2006年 / 27卷
关键词
Chebyshev spectral method; direct numerical simulation; 3D lid-driven cavity;
D O I
暂无
中图分类号
学科分类号
摘要
Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier–Stokes equations in a cubical domain. The Projection-Diffusion method [Leriche and Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386–1410), Leriche et al. (2005, J. Sci. Comput., in press)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented
引用
收藏
页码:335 / 345
页数:10
相关论文
共 50 条
  • [31] Direct numerical simulation of pipe flow using a solenoidal spectral method
    Ozan Tuğluk
    Hakan I. Tarman
    Acta Mechanica, 2012, 223 : 923 - 935
  • [32] Numerical simulation of flow separation over a backward-facing step with high Reynolds number
    Fang-fang Wang
    Shi-qiang Wu
    Sen-lin Zhu
    Water Science and Engineering, 2019, 12 (02) : 145 - 154
  • [33] Numerical simulation of flow separation over a backward-facing step with high Reynolds number
    Wang, Fang-fang
    Wu, Shi-qiang
    Zhu, Sen-lin
    WATER SCIENCE AND ENGINEERING, 2019, 12 (02) : 145 - 154
  • [34] Direct numerical simulation of film cooling with a fan-shaped hole under low Reynolds number conditions
    Fu, Wu-Shung
    Chao, Wei-Siang
    Tsubokura, Makoto
    Li, Chung-Gang
    Wang, Wei-Hsiang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 : 544 - 560
  • [35] On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows
    Bernardini, Matteo
    Modesti, Davide
    Pirozzoli, Sergio
    COMPUTERS & FLUIDS, 2016, 130 : 84 - 93
  • [36] Towards a new model-free simulation of high-Reynolds-flows: Local average direct numerical simulation
    Denaro, FM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 23 (02) : 125 - 142
  • [37] ZDES Simulation and Spectral Analysis of a High-Reynolds-Number Out-of-Equilibrium Turbulent Boundary Layer
    Vaquero, Jaime
    Renard, Nicolas
    Deck, Sebastien
    FLOW TURBULENCE AND COMBUSTION, 2022, 109 (04) : 1059 - 1079
  • [38] Direct Numerical Simulation of High Prandtl Number Fluid Flow in the Downcomer of an Advanced Reactor
    Nguyen, Tri
    Merzari, Elia
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (10) : 2634 - 2659
  • [39] A multi-scale simulation method for high Reynolds number wall-bounded turbulent flows
    Ranjan, R.
    Menon, S.
    JOURNAL OF TURBULENCE, 2013, 14 (09): : 1 - 38
  • [40] A new relation of drag force for high Stokes number monodisperse spheres by direct numerical simulation
    Zaidi, Ali Abbas
    Tsuji, Takuya
    Tanaka, Toshitsugu
    ADVANCED POWDER TECHNOLOGY, 2014, 25 (06) : 1860 - 1871