Generalizing cryptosystems based on the subset sum problem

被引:0
作者
Aniket Kate
Ian Goldberg
机构
[1] Max Planck Institute for Software Systems (MPI-SWS),Cheriton School of Computer Science
[2] University of Waterloo,undefined
来源
International Journal of Information Security | 2011年 / 10卷
关键词
Public-key cryptography; Subset-sum problem; Damgård-Jurik; RFID security and privacy; Okamoto-Tanaka-Uchiyama;
D O I
暂无
中图分类号
学科分类号
摘要
We identify a generic construction of cryptosystems based on the subset sum problem and characterize the required homomorphic map. Using the homomorphism from the Damgård-Jurik cryptosystem, we then eliminate the need for a discrete logarithm oracle in the key generation step of the Okamoto et al. scheme to provide a practical cryptosystem based on the subset sum problem. We also analyze the security of our cryptosystem and show that with proper parameter choices, it is computationally secure against lattice-based attacks. Finally, we present a practical application of this system for RFID security and privacy.
引用
收藏
页码:189 / 199
页数:10
相关论文
共 24 条
[1]  
Bose R.(1962)Theorems in the additive theory of numbers Comment. Math. Helv. 37 141-147
[2]  
Chowla S.(1988)A knapsack-type public-key cryptosystem based on arithmetic in finite fields IEEE Trans. Inf. Theory 34 901-909
[3]  
Chor B.(1973)Enumerative source encoding IEEE Trans. Inf. Theory 19 73-77
[4]  
Rivest R.L.(1986)An improved lower bound on the greatest element of a sum-distinct set of fixed order J. Comb. Theory Ser. A 41 89-94
[5]  
Cover T.(2007)Low-density attack revisited Des. Codes Cryptogr. 43 47-59
[6]  
Elkies N.D.(2006)RFID Security and privacy: a research survey IEEE J. Sel. Areas Commun. 24 381-394
[7]  
Izu T.(1982)Factoring polynomials with rational coefficients Math. Ann. 261 515-534
[8]  
Kogure J.(1978)Information and signatures in trapdoor knapsacks IEEE Trans. Inf. Theory 24 525-530
[9]  
Koshiba T.(1986)Knapsack-type cryptosystems and algebraic coding theory Probl. Control Inf. Theory 15 159-166
[10]  
Shimoyama T.(2004)Density attack to the Knapsack cryptosystems with enumerative source encoding IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A 1564-1569