Integral Iwasawa theory of galois representations for non-ordinary primes

被引:0
作者
Kâzım Büyükboduk
Antonio Lei
机构
[1] Koç University,Department of Mathematics
[2] Université Laval,Département de Mathématiques Et de Statistique
[3] Pavillion Alexandre-Vachon,undefined
来源
Mathematische Zeitschrift | 2017年 / 286卷
关键词
Iwasawa Theory; Coleman Maps; Hodge Tate Weights; Kolyvagin Systems; Selmer Group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Iwasawa theory of a motive whose Hodge–Tate weights are 0 or 1 (thence in practice, of a motive associated to an abelian variety) at a non-ordinary prime, over the cyclotomic tower of a number field that is either totally real or CM. In particular, under certain technical assumptions, we construct Sprung-type Coleman maps on the local Iwasawa cohomology groups and use them to define integral p-adic L-functions and (one unconditionally and other conjecturally) cotorsion Selmer groups. This allows us to reformulate Perrin–Riou’s main conjecture in terms of these objects, in the same fashion as Kobayashi’s ±-Iwasawa theory for supersingular elliptic curves. By the aid of the theory of Coleman-adapted Kolyvagin systems we develop here, we deduce parts of Perrin–Riou’s main conjecture from an explicit reciprocity conjecture.
引用
收藏
页码:361 / 398
页数:37
相关论文
共 20 条
[1]  
Berger L(2004)Limites de représentations cristallines Compos. Math. 140 1473-1498
[2]  
Büyükboduk K(2015)Coleman-adapted Rubin–Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties Proc. Lond. Math. Soc. (3) 111 1338-1378
[3]  
Lei A(1998)Théorie d’Iwasawa des représentations de de Rham d’un corps local Ann. Math. (2) 148 485-571
[4]  
Colmez P(2003)Iwasawa theory for elliptic curves at supersingular primes Invent. Math. 152 1-36
[5]  
Kobayashi S(2011)Iwasawa theory for modular forms at supersingular primes Compos. Math. 147 803-838
[6]  
Lei A(2010)Wach modules and Iwasawa theory for modular forms Asian J. Math. 14 475-528
[7]  
Lei A(2011)Coleman maps and the Algebra Number Theory 5 1095-1131
[8]  
Loeffler D(2016)-adic regulator J. Théor. Nombres Bordeaux 28 145-183
[9]  
Zerbes SL(2003)Controlling Selmer groups in the higher core rank case Duke Math. J. 118 523-558
[10]  
Lei A(1992)On the Invent. Math. 109 137-185