In this paper we consider a compact oriented hypersurface Mn with constant mean curvature H and two distinct principal curvatures λ and μ with multiplicities (n − m) and m, respectively, immersed in the unit sphere Sn+1. Denote by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi_{ij}}$$\end{document} the trace free part of the second fundamental form of Mn, and Φ be the square of the length of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi_{ij}}$$\end{document} . We obtain two integral formulas by using Φ and the polynomial \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${P_{H,m}(x)=x^{2}+ \frac{n(n-2m)}{\sqrt{nm(n-m)}}H x -n(1+H^{2})}$$\end{document} . Assume that BH,m is the square of the positive root of PH,m(x) = 0. We show that if Mn is a compact oriented hypersurface immersed in the sphere Sn+1 with constant mean curvatures H having two distinct principal curvatures λ and μ then either \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Phi=B_{H,m}}$$\end{document} or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Phi=B_{H,n-m}}$$\end{document} . In particular, Mn is the hypersurface \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${S^{n-m}(r)\times S^{m}(\sqrt{1-r^{2}})}$$\end{document} .