On discrete hyperbolic tension splines

被引:0
作者
Paolo Costantini
Boris I. Kvasov
Carla Manni
机构
[1] Università di Siena,Dipartimento di Matematica
[2] Russian Academy of Sciences,Institute of Computational Technologies
[3] Università di Torino,Dipartimento di Matematica
来源
Advances in Computational Mathematics | 1999年 / 11卷
关键词
hyperbolic tension splines; multipoint boundary value problem; discrete hyperbolic tension splines and B-splines; shape preserving interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
A hyperbolic tension spline is defined as the solution of a differential multipoint boundary value problem. A discrete hyperbolic tension spline is obtained using the difference analogues of differential operators; its computation does not require exponential functions, even if its continuous extension is still a spline of hyperbolic type. We consider the basic computational aspects and show the main features of this approach.
引用
收藏
页码:331 / 354
页数:23
相关论文
共 30 条
  • [1] Akima H.(1970)A new method of interpolation and smooth curve fitting based on local procedures J. Assoc. Comput. Mach. 17 589-602
  • [2] Cohen E.(1980)Discrete B-splines and subdivision techniques in computer aided geometric design and computer graphics Comput. Graphics Image Process. 14 87-111
  • [3] Lyche T.(1989)On multivariate E-splines Adv. Math. 76 33-93
  • [4] Riesenfeld R.(1985)Shape preserving piecewise rational interpolation SIAM J. Sci. Statist. Comput. 6 967-976
  • [5] Dahmen W.(1970)An iterative method for the construction of polycubic spline functions Soviet Math. Dokl. 11 1643-1645
  • [6] Micchelli C.A.(1995)Local bases for generalized cubic splines Russian J. Numer. Anal. Math. Modelling 10 49-80
  • [7] Delbourgo R.(1996)GB-splines and their properties Ann. Numer. Math. 3 139-149
  • [8] Gregory J.A.(1976)Discrete cubic spline interpolation BIT 16 281-290
  • [9] Janenko N.N.(1977)On the computation of nonlinear spline functions SIAM J. Numer. Anal. 14 254-282
  • [10] Kvasov B.I.(1971)Discrete splines via mathematical programming SIAM J. Control 9 174-183