Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures

被引:0
作者
Hodjat Hajian
Andriy E. Serebryannikov
Amir Ghobadi
Yigit Demirag
Bayram Butun
Guy A. E. Vandenbosch
Ekmel Ozbay
机构
[1] Bilkent University,Nanotechnology Research Center
[2] Katholieke Universiteit Leuven,ESAT
[3] Adam Mickiewicz University,TELEMIC
[4] Bilkent University,Faculty of Physics
[5] Bilkent University,Department of Electrical and Electronics Engineering
来源
Scientific Reports | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Being one-atom thick and tunable simultaneously, graphene plays the revolutionizing role in many areas. The focus of this paper is to investigate the modal characteristics of surface waves in structures with graphene in the far-infrared (far-IR) region. We discuss the effects exerted by substrate permittivity on propagation and localization characteristics of surface-plasmon-polaritons (SPPs) in single-layer graphene and theoretically investigate characteristics of the hybridized surface-phonon-plasmon-polaritons (SPPPs) in graphene/LiF/glass heterostructures. First, it is shown how high permittivity of substrate may improve characteristics of graphene SPPs. Next, the possibility of optimization for surface-phonon-polaritons (SPhPs) in waveguides based on LiF, a polar dielectric with a wide polaritonic gap (Reststrahlen band) and a wide range of permittivity variation, is demonstrated. Combining graphene and LiF in one heterostructure allows to keep the advantages of both, yielding tunable hybridized SPPPs which can be either forwardly or backwardly propagating. Owing to high permittivity of LiF below the gap, an almost 3.2-fold enhancement in the figure of merit (FoM), ratio of normalized propagation length to localization length of the modes, can be obtained for SPPPs at 5–9 THz, as compared with SPPs of graphene on conventional glass substrate. The enhancement is efficiently tunable by varying the chemical potential of graphene. SPPPs with characteristics which strongly differ inside and around the polaritonic gap are found.
引用
收藏
相关论文
共 174 条
  • [81] Hillenbrand R(undefined)undefined undefined undefined undefined-undefined
  • [82] Taubner T(undefined)undefined undefined undefined undefined-undefined
  • [83] Keilmann F(undefined)undefined undefined undefined undefined-undefined
  • [84] Caldwell JD(undefined)undefined undefined undefined undefined-undefined
  • [85] Kafesaki M(undefined)undefined undefined undefined undefined-undefined
  • [86] Basharin AA(undefined)undefined undefined undefined undefined-undefined
  • [87] Economou EN(undefined)undefined undefined undefined undefined-undefined
  • [88] Soukoulis CM(undefined)undefined undefined undefined undefined-undefined
  • [89] Serebryannikov AE(undefined)undefined undefined undefined undefined-undefined
  • [90] Ozbay E(undefined)undefined undefined undefined undefined-undefined