Growth of torsion groups of elliptic curves upon base change from number fields

被引:0
作者
Tyler Genao
机构
[1] University of Georgia,
来源
The Ramanujan Journal | 2024年 / 63卷
关键词
Complex multiplication; Elliptic curve; Galois representation; Torsion subgroup; 11G05; 11G15;
D O I
暂无
中图分类号
学科分类号
摘要
Given a number field F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0$$\end{document} that contains no Hilbert class field of any imaginary quadratic field, we show that under GRH, there exists an effectively computable constant B:=B(F0)∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:=B(F_0)\in \mathbb {Z}^+$$\end{document} for which the following holds: for any finite extension L/F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L/F_0$$\end{document} whose degree [L:F0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[L:F_0]$$\end{document} is coprime to B, one has for all elliptic curves E/F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{/F_0}$$\end{document} that the L-rational torsion subgroup E(L)[tors]=E(F0)[tors]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(L)[\text {tors}]=E(F_0)[\text {tors}]$$\end{document}. This generalizes a previous result of González-Jiménez and Najman [6, Theorem 7.2.i] over F0=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0=\mathbb {Q}$$\end{document}. Toward showing this, we also prove a result on relative uniform divisibility of the index of a mod-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} Galois representation of an elliptic curve over F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0$$\end{document}. Additionally, we show that the main result’s conclusion fails when we allow F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0$$\end{document} to have rationally defined CM, due to the existence of F0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0$$\end{document}-rational isogenies of arbitrarily large prime degrees satisfying certain congruency conditions.
引用
收藏
页码:409 / 429
页数:20
相关论文
共 14 条
  • [1] Bourdon A(2020)Torsion points and Galois representations on CM elliptic curves Pac. J. Math. 305 43-88
  • [2] Clark PL(2017)Torsion subgroups of CM elliptic curves over odd degree number fields Int. Math. Res. Not. IMRN 16 4923-4961
  • [3] Bourdon A(2022)Typically bounding torsion on elliptic curves with rational J. Number Theory 238 823-841
  • [4] Pollack P(2020)-invariant Math. Comput. 89 1457-1485
  • [5] Genao T(2014)Growth of torsion groups of elliptic curves upon base change J. Inst. Math. Jussieu 13 517-559
  • [6] González-Jiménez E(2021)Determinants of subquotients of Galois representations associated with abelian varieties, with an appendix by Brian Conrad Algebra Number Theory 15 747-771
  • [7] Najman F(2013)Residual Galois representations of elliptic curves with image contained in the normaliser of a nonsplit Cartan Math. Ann. 357 279-305
  • [8] Larson E(1996)On the field of definition of Invent. Math. 124 437-449
  • [9] Vaintrob D(1972)-torsion points on elliptic curves over the rationals Invent. Math. 15 259-331
  • [10] Le Fourn S(undefined)Bornes pour la torsion des courbes elliptiques sur les corps de nombres undefined undefined undefined-undefined