Global Existence and Large Time Behavior of Solutions to 3D MHD System Near Equilibrium

被引:0
|
作者
Yamin Xiao
Baoquan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Results in Mathematics | 2021年 / 76卷
关键词
magnetohydrodynamic system; global stability; large-time behavior; Lei-Lin space; 35Q35; 35B40; 35B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the stability problem on perturbation near a physically steady state solution of the 3D generalized incompressible magnetohydrodynamic system in Lei-Lin space. The global stability and analytic estimates for small perturbation are established by the semigroup method in the critical space χ1-2α(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{1-2\alpha }(\mathbb {R}^3)$$\end{document} with 12≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le \alpha \le 1$$\end{document}, where linear terms from perturbation incur much difficulty. By introducing a diagonalization process we successfully eliminate the linear terms. Then, by virtue of the analytic estimates for a solution, the temporal decay rate (1+t)-(54α-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-(\frac{5}{4\alpha }-1)}$$\end{document} of the global solution is obtained.
引用
收藏
相关论文
共 50 条
  • [21] Analyticity and time-decay rate of global solutions for the generalized MHD system near an equilibrium
    Lu, Cheng
    Li, Weijia
    Wang, Yuzhu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [22] ON THE DECAY AND STABILITY OF GLOBAL SOLUTIONS TO THE 3D INHOMOGENEOUS MHD SYSTEM
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 745 - 780
  • [23] Global solutions of the 3D compressible MHD system in a bounded domain
    Fan, Jishan
    Jing, Lulu
    Nakamura, Gen
    Tang, Tong
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 17 (01) : 61 - 73
  • [24] Global existence and large time behavior of solutions of a time fractional reaction diffusion system
    Ahmed Alsaedi
    Bashir Ahmad
    Mokhtar Kirane
    Rafika Lassoued
    Fractional Calculus and Applied Analysis, 2020, 23 : 390 - 407
  • [25] GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS OF A TIME FRACTIONAL REACTION DIFFUSION SYSTEM
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    Lassoued, Rafika
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 390 - 407
  • [26] Long time behavior of solutions to 3D generalized MHD equations
    Zhao, Xiaopeng
    FORUM MATHEMATICUM, 2020, 32 (04) : 977 - 993
  • [27] On the Global Solution of a 3-D MHD System with Initial Data near Equilibrium
    Abidi, Hammadi
    Zhang, Ping
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (08) : 1509 - 1561
  • [28] Global stability of large solutions to the 3D nonhomogeneous incompressible MHD equations
    Qiu, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [29] Existence and Approximation of Statistical Solutions of the 3D MHD Equations
    Zhang, Yuanyuan
    Chen, Guanggan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (03): : 326 - 354
  • [30] Global small solutions to the 3D MHD system with a velocity damping term
    Zhao, Yajuan
    Zhai, Xiaoping
    APPLIED MATHEMATICS LETTERS, 2021, 121