Global Existence and Large Time Behavior of Solutions to 3D MHD System Near Equilibrium

被引:0
|
作者
Yamin Xiao
Baoquan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Results in Mathematics | 2021年 / 76卷
关键词
magnetohydrodynamic system; global stability; large-time behavior; Lei-Lin space; 35Q35; 35B40; 35B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the stability problem on perturbation near a physically steady state solution of the 3D generalized incompressible magnetohydrodynamic system in Lei-Lin space. The global stability and analytic estimates for small perturbation are established by the semigroup method in the critical space χ1-2α(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{1-2\alpha }(\mathbb {R}^3)$$\end{document} with 12≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le \alpha \le 1$$\end{document}, where linear terms from perturbation incur much difficulty. By introducing a diagonalization process we successfully eliminate the linear terms. Then, by virtue of the analytic estimates for a solution, the temporal decay rate (1+t)-(54α-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-(\frac{5}{4\alpha }-1)}$$\end{document} of the global solution is obtained.
引用
收藏
相关论文
共 50 条