Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries

被引:0
|
作者
Jang-Yeon Hwang
Seung-Min Oh
Seung-Taek Myung
Kyung Yoon Chung
Ilias Belharouak
Yang-Kook Sun
机构
[1] Hanyang University,Department of Energy Engineering
[2] Sejong University,Department of Nano Engineering
[3] Center for Energy Convergence Research,undefined
[4] Korea Institute of Science and Technology,undefined
[5] Qatar Environment and Energy Research Institute,undefined
[6] Qatar Foundation,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Delivery of high capacity with good retention is a challenge in developing cathodes for rechargeable sodium-ion batteries. Here we present a radially aligned hierarchical columnar structure in spherical particles with varied chemical composition from the inner end (Na[Ni0.75Co0.02Mn0.23]O2) to the outer end (Na[Ni0.58Co0.06Mn0.36]O2) of the structure. With this cathode material, we show that an electrochemical reaction based on Ni2+/3+/4+ is readily available to deliver a discharge capacity of 157 mAh (g-oxide)−1 (15 mA g−1), a capacity retention of 80% (125 mAh g−1) during 300 cycles in combination with a hard carbon anode, and a rate capability of 132.6 mAh g-1 (1,500 mA g-1, 10 C-rate). The cathode also exhibits good temperature performance even at −20°C. These results originate from rather unique chemistry of the cathode material, which enables the Ni redox reaction and minimizes the surface area contacting corrosive electrolyte.
引用
收藏
相关论文
共 50 条
  • [1] Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries
    Hwang, Jang-Yeon
    Oh, Seung-Min
    Myung, Seung-Taek
    Chung, Kyung Yoon
    Belharouak, Ilias
    Sun, Yang-Kook
    NATURE COMMUNICATIONS, 2015, 6
  • [2] Nanoporous Cathode Material for High-Energy-Density Sodium-Ion Batteries
    Ding, Haiyang
    Li, Hao
    Tao, Qingdong
    Ren, Jianhui
    He, Jiafeng
    ACS APPLIED NANO MATERIALS, 2023, 7 (01) : 243 - 252
  • [3] Bioinspired Surface Layer for the Cathode Material of High-Energy-Density Sodium-Ion Batteries
    Jo, Chang-Heum
    Jo, Jae-Hyeon
    Yashiro, Hitoshi
    Kim, Sun-Jae
    Sun, Yang-Kook
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2018, 8 (13)
  • [4] Recent advances in high energy-density cathode materials for sodium-ion batteries
    Lyu, Yingchun
    Liu, Yuchen
    Yu, Zhuo-Er
    Su, Na
    Liu, Yang
    Li, Wenxian
    Li, Qian
    Guo, Bingkun
    Liu, Bin
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2019, 21
  • [5] Cathode Modification of Sodium-Ion Batteries for Improved energy Density: A Review
    Wan, Xiaoyuan
    Li, Yanlin
    Chen, Shenghua
    Duan, Wenyuan
    Lei, Wanying
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (12):
  • [6] The research progress of cathode material for sodium-ion batteries
    Yang, Shaobin
    Dong, Wei
    Shen, Ding
    Wang, Xiaoliang
    Li, Sinan
    Wang, Feng
    Wang, Yang
    Sun, Wen
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (13): : 13001 - 13006
  • [7] Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium-Ion Batteries
    Voronina, Natalia
    Kim, Hee Jae
    Konarov, Aishuak
    Yaqoob, Najma
    Lee, Kug-Seung
    Kaghazchi, Payam
    Guillon, Olivier
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [8] Hierarchical Engineering for High-Energy-Oriented Sodium-Ion Batteries
    Liu, Pei
    Yi, Haotian
    Chen, Xuchun
    Zhu, Kunjie
    Li, Zhaopeng
    Sun, Zhiqin
    Jiao, Lifang
    ACCOUNTS OF MATERIALS RESEARCH, 2022, : 672 - 684
  • [9] High-Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodium-Ion Batteries
    Tang, Yun
    Li, Wei
    Feng, Pingyuan
    Zhou, Min
    Wang, Kangli
    Wang, Yuesheng
    Zaghib, Karim
    Jiang, Kai
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (10)
  • [10] Exploring the Anionic Redox Chemistry in Cathode Materials for High-Energy-Density Sodium-Ion Batteries
    Shoaib, Muhammad
    Thangadurai, Venkataraman
    ACS OMEGA, 2022, : 34710 - 34717