Witt invariants from q-series Z^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{Z}}$$\end{document}

被引:0
作者
John Chae
机构
[1] UC Davis,Center for Quantum Mathematics and Physics (QMAP)
关键词
Quantum invariants; Cobordism invariants; q-series; Chern-Simon gauge theory; Categorification; 57K16; 57K31; 57K41;
D O I
10.1007/s11005-022-01629-9
中图分类号
学科分类号
摘要
We present a relation between the Witt invariants of 3-manifolds and the Z^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{Z}}$$\end{document}-invariants. It provides an alternative approach to compute the Witt invariants of 3-manifolds, which were originally defined geometrically in four dimensions. We analyze various homology spheres including a hyperbolic manifold using this method.
引用
收藏
相关论文
共 41 条
  • [1] Akutsu Y(1992)Invariants of colored links J. Knot Theory Ramif. 1 161-184
  • [2] Deguchi T(1975)Spectral asymmetry and Riemannian geometry. I Math. Proc. Camb. Philos. Soc. 77 43-69
  • [3] Ohtsuki T(2019)3d modularity J. High Energy Phys. 10 1-95
  • [4] Atiyah M(2020)BPS invariants for Seifert manifolds J. High Energy Phys. 113 1-67
  • [5] Patodi V(2011)Homological obstructions to string orientations Int. Math. Res. Not. 2011 4074-4088
  • [6] Singer I(2021)Cobordism invariants from BPS q-series Ann. Henri Poincare 22 4173-4203
  • [7] Cheng M(2017)Fivebranes and 3-manifold homology J. High Energy Phys. 07 71-154
  • [8] Chun S(2020)BPS spectra and 3-manifold invariants J. Knot Theory Ramif. 29 2040003-545
  • [9] Ferrari F(2005)Quantum invariant, modular form, and lattice points Int. Math. Res. Not. 2005 121-617
  • [10] Gukov S(2006)Quantum invariant, modular form, and lattice points 2 J. Math. Phys. 47 473-224