The parameter choice rules for weighted Tikhonov regularization scheme

被引:0
作者
G. D. Reddy
机构
[1] Indian Institute of Technology Hyderabad,Department of Mechanical and Aerospace Engineering
来源
Computational and Applied Mathematics | 2018年 / 37卷
关键词
Ill-posed problems; Weighted Tikhonov regularization; Parameter choice rules; 65F22; 65R30; 65R32;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known approach to solve the ill-posed problem is Tikhonov regularization scheme. But, the approximate solution of Tikhonov scheme may not contain all the details of the exact solution. To circumference this problem, weighted Tikhonov regularization has been introduced. In this article, we propose two a posteriori parameter choice rules to choose the regularization parameter for weighted Tikhonov regularization and establish the optimal rate of convergence O(δα+1α+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\delta ^\frac{\alpha +1}{\alpha +2})$$\end{document} for the scheme based on these proposed rules. The numerical results are documented to demonstrate the significance of the theoretical results.
引用
收藏
页码:2039 / 2052
页数:13
相关论文
共 17 条
  • [1] Bianchi D(2015)Iterated Fractional Tikhonov Regularization Inverse Probl 31 055005-215
  • [2] Buccini A(1987)Discrepancy principle for tikhonov regularization of Ill-posed problems leading to optimal convergence rates J Optim Theory Appl 52 209-625
  • [3] Donatelli M(2015)On fractional tikhonov regularization J Inverse Ill-posed Probl 23 611-194
  • [4] Serra-Capizzano S(2007)Regularization tools version 4.0 for Matlab 7.3 Numer Algorithms 46 189-129
  • [5] Engl HW(2015)Fractional regularization matrices for linear discrete Ill-posed problems J Eng Math 93 113-215
  • [6] Gerth D(2011)Fractional tikhonov regularization for linear discrete Ill-posed problems BIT Numer Math 51 197-129
  • [7] Klann E(2008)Regularization by Fractional filter methods and data smoothing Inverse Probl 24 113-undefined
  • [8] Ramlau R(undefined)undefined undefined undefined undefined-undefined
  • [9] Reichel L(undefined)undefined undefined undefined undefined-undefined
  • [10] Hansen PC(undefined)undefined undefined undefined undefined-undefined