KMS States on the Operator Algebras of Reducible Higher-Rank Graphs

被引:0
作者
Astrid an Huef
Sooran Kang
Iain Raeburn
机构
[1] University of Otago,Department of Mathematics and Statistics
[2] Sungkyunkwan University,Department of Mathematics
[3] University of Otago,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2017年 / 88卷
关键词
Higher-rank graph; Toeplitz ; -algebra; KMS state; 46L30; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equilibrium or KMS states of the Toeplitz C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra of a finite higher-rank graph which is reducible. The Toeplitz algebra carries a gauge action of a higher-dimensional torus, and a dynamics arises by choosing an embedding of the real numbers in the torus. Here we use an embedding which leads to a dynamics which has previously been identified as “preferred”, and we scale the dynamics so that 1 is a critical inverse temperature. As with 1-graphs, we study the strongly connected components of the vertices of the graph. The behaviour of the KMS states depends on both the graphical relationships between the components and the relative size of the spectral radii of the vertex matrices of the components. We test our theorems on graphs with two connected components. We find that our techniques give a complete analysis of the KMS states with inverse temperatures down to a second critical temperature βc<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _c<1$$\end{document}.
引用
收藏
页码:91 / 126
页数:35
相关论文
共 61 条
  • [1] Carlsen TM(2016)Partial actions and KMS states on relative graph J. Funct. Anal. 271 2090-2132
  • [2] Larsen NS(2016)-algebras J. Oper. Theory 75 119-138
  • [3] Chlebovec C(2016)KMS states for quasi-free actions on finite-graph algebras J. Math. Anal. Appl. 433 1626-1646
  • [4] Christensen J(2009)Finite digraphs and KMS states Can. J. Math. 61 1239-1261
  • [5] Thomsen K(1984)Periodicity in rank 2 graph algebras Math. Jpn. 29 607-619
  • [6] Davidson KR(2003)KMS states for gauge action on Commun. Math. Phys. 232 223-277
  • [7] Yang D(1999)Partial dynamical systems and the KMS condition Indiana Univ. Math. J. 48 155-181
  • [8] Enomoto M(2013)The Toeplitz algebra of a Hilbert bimodule Proc. Edinburgh Math. Soc. 56 575-597
  • [9] Fujii M(2015)Remarks on some fundamental results about higher-rank graphs and their J. Math. Anal. Appl. 427 977-1003
  • [10] Watatani Y(2013)-algebras J. Math. Anal. Appl. 405 388-399