Generating Functions for Local Symplectic Groupoids and Non-perturbative Semiclassical Quantization

被引:0
|
作者
Alejandro Cabrera
机构
[1] Instituto de Matemática,
[2] Universidade Federal do Rio de Janeiro,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper contains three results about generating functions for Lie-theoretic integration of Poisson brackets and their relation to quantization. In the first, we show how to construct a generating function associated to the germ of any local symplectic groupoid and we provide an explicit (smooth, non-formal) universal formula Sπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\pi $$\end{document} for integrating any Poisson structure π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} on a coordinate space. The second result involves the relation to semiclassical quantization. We show that the formal Taylor expansion of Stπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{t\pi }$$\end{document} around t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} yields an extract of Kontsevich’s star product formula based on tree-graphs, recovering the formal family introduced by Cattaneo, Dherin and Felder in [6]. The third result involves the relation to semiclassical aspects of the Poisson Sigma model. We show that Sπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\pi $$\end{document} can be obtained by non-perturbative functional methods, evaluating a certain functional on families of solutions of a PDE on a disk, for which we show existence and classification.
引用
收藏
页码:1243 / 1296
页数:53
相关论文
共 50 条