Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

被引:0
|
作者
Emmanuel Fendzi-Donfack
Jean Pierre Nguenang
Laurent Nana
机构
[1] University of Douala,Pure Physics Laboratory, Group of Nonlinear Physics and Complex Systems, Department of Physics Faculty of Sciences
[2] University of Yaounde I,Nonlinear Physics and Complex Systems Group, Department of Physics, The Higher Teacher’s Training College
[3] Abdus Salam ICTP,undefined
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha\le 1$\end{document}) of the derivative operator and we found the traditional solutions for the limiting case of α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =1$\end{document}. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
引用
收藏
相关论文
共 50 条
  • [21] An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation
    Ala, Volkan
    Demirbilek, Ulviye
    Mamedov, Khanlar R.
    AIMS MATHEMATICS, 2020, 5 (04): : 3751 - 3761
  • [22] Traveling wave solutions for two nonlinear lattice equations by an extended riccati sub-equation method
    Wen, C. (wcb2001171@126.com), 1600, World Scientific and Engineering Academy and Society, aAg. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (11):
  • [23] Exact solutions for fractional partial differential equations by a new fractional sub-equation method
    Zheng, Bin
    Wen, Chuanbao
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [24] Exact solutions for fractional partial differential equations by a new fractional sub-equation method
    Bin Zheng
    Chuanbao Wen
    Advances in Difference Equations, 2013
  • [25] IMPROVED FRACTIONAL SUB-EQUATION METHOD AND ITS APPLICATIONS TO FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Guoying Xu
    Tiecheng Xia
    Annals of Applied Mathematics, 2015, 31 (03) : 354 - 362
  • [26] On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line
    Fendzi-Donfack, Emmanuel
    Nguenang, Jean Pierre
    Nana, Laurent
    NONLINEAR DYNAMICS, 2021, 104 (01) : 691 - 704
  • [27] On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line
    Emmanuel Fendzi-Donfack
    Jean Pierre Nguenang
    Laurent Nana
    Nonlinear Dynamics, 2021, 104 : 691 - 704
  • [28] Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method
    Fendzi-Donfack, Emmanuel
    Kumar, Dipankar
    Tala-Tebue, Eric
    Nana, Laurent
    Nguenang, Jean Pierre
    Kenfack-Jiotsa, Aurelien
    RESULTS IN PHYSICS, 2022, 32
  • [29] Analytical Solution of Two Dimensional Nonlinear Space-Time Fractional Burgers-Huxley Equation Using Fractional Sub-Equation Method
    Tripathi, Neeraj Kumar
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (05): : 295 - 299
  • [30] A study of the wave dynamics of the space–time fractional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation function approach
    Anamika Podder
    Mohammad Asif Arefin
    M. Ali Akbar
    M. Hafiz Uddin
    Scientific Reports, 13