Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

被引:0
|
作者
Emmanuel Fendzi-Donfack
Jean Pierre Nguenang
Laurent Nana
机构
[1] University of Douala,Pure Physics Laboratory, Group of Nonlinear Physics and Complex Systems, Department of Physics Faculty of Sciences
[2] University of Yaounde I,Nonlinear Physics and Complex Systems Group, Department of Physics, The Higher Teacher’s Training College
[3] Abdus Salam ICTP,undefined
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha\le 1$\end{document}) of the derivative operator and we found the traditional solutions for the limiting case of α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =1$\end{document}. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
引用
收藏
相关论文
共 50 条
  • [1] Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation
    Fendzi-Donfack, Emmanuel
    Nguenang, Jean Pierre
    Nana, Laurent
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02):
  • [2] A generalized fractional sub-equation method for nonlinear fractional differential equations
    Bekir, Ahmet
    Aksoy, Esin
    Guner, Ozkan
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 78 - 83
  • [3] Exact solutions of nonlinear partial fractional differential equations using fractional sub-equation method
    K. A. Gepreel
    A. A. Al-Thobaiti
    Indian Journal of Physics, 2014, 88 : 293 - 300
  • [4] THE MODIFIED FRACTIONAL SUB-EQUATION METHOD AND ITS APPLICATIONS TO NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Wang, Gang Wei
    Xu, Tian Zhou
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (7-8): : 636 - 645
  • [5] Exact solutions of nonlinear partial fractional differential equations using fractional sub-equation method
    Gepreel, K. A.
    Al-Thobaiti, A. A.
    INDIAN JOURNAL OF PHYSICS, 2014, 88 (03) : 293 - 300
  • [6] THE IMPROVED FRACTIONAL SUB-EQUATION METHOD AND ITS APPLICATIONS TO NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Wang, Gang Wei
    Xu, Tian Zhou
    ROMANIAN REPORTS IN PHYSICS, 2014, 66 (03) : 595 - 602
  • [7] Exact solutions of nonlinear time fractional partial differential equations by sub-equation method
    Bekir, Ahmet
    Aksoy, Esin
    Cevikel, Adem C.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (13) : 2779 - 2784
  • [8] Fractional sub-equation method and its applications to nonlinear fractional PDEs
    Zhang, Sheng
    Zhang, Hong-Qing
    PHYSICS LETTERS A, 2011, 375 (07) : 1069 - 1073
  • [9] A modification of fan sub-equation method for nonlinear partial differential equations
    Zhang, Sheng
    Peng, Ao-Xue
    IAENG International Journal of Applied Mathematics, 2014, 44 (01) : 10 - 14
  • [10] Discrete Jacobi sub-equation method for nonlinear differential-difference equations
    Wang, Zhen
    Ma, Wen-Xiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (12) : 1463 - 1472