On the Glivenko-Cantelli problem in stochastic programming: Mixed-integer linear recourse

被引:0
|
作者
Georg Ch. Pflug
Andrzej Ruszczyński
Rüdiger Schultz
机构
[1] Universität Wien,Institut für Statistik und Operations Research
[2] Rutgers University,Department of Management Science and Information Systems
[3] Universität Leipzig,Mathematisches Institut
关键词
Stochastic Programming; Empirical Measures; Uniform Convergence; Value Functions of Mixed-Integer Linear Programs;
D O I
暂无
中图分类号
学科分类号
摘要
Expected recourse functions in linear two-stage stochastic programs with mixed-integer second stage are approximated by estimating the underlying probability distribution via empirical measures. Under mild conditions, almost sure uniform convergence of the empirical means to the original expected recourse function is established.
引用
收藏
页码:39 / 49
页数:10
相关论文
共 50 条
  • [31] Mixed-integer linear programming models for the paint waste management problem
    Wang, Juyoung
    Cevik, Mucahit
    Amin, Saman Hassanzadeh
    Parsaee, Amir Ali
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2021, 151
  • [32] A mixed-integer linear programming model for solving fuzzy stochastic resource constrained project scheduling problem
    Alipouri, Yagub
    Sebt, Mohammad Hassan
    Ardeshir, Abdollah
    Zarandi, Mohammad Hossein Fazel
    OPERATIONAL RESEARCH, 2020, 20 (01) : 197 - 217
  • [33] Safe bounds in linear and mixed-integer linear programming
    Arnold Neumaier
    Oleg Shcherbina
    Mathematical Programming, 2004, 99 : 283 - 296
  • [34] Conditional value-at-risk in stochastic programs with mixed-integer recourse
    Schultz, R
    Tiedemann, S
    MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) : 365 - 386
  • [35] Safe bounds in linear and mixed-integer linear programming
    Neumaier, A
    Shcherbina, O
    MATHEMATICAL PROGRAMMING, 2004, 99 (02) : 283 - 296
  • [36] Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse
    Rüdiger Schultz
    Stephan Tiedemann
    Mathematical Programming, 2006, 105 : 365 - 386
  • [37] SelfSplit parallelization for mixed-integer linear programming
    Fischetti, Matteo
    Monaci, Michele
    Salvagnin, Domenico
    COMPUTERS & OPERATIONS RESEARCH, 2018, 93 : 101 - 112
  • [38] Multicolumn-multicut cross decomposition for stochastic mixed-integer linear programming
    Ogbe, Emmanuel
    Li, Xiang
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 737 - 742
  • [39] A Stochastic Mixed-Integer Programming approach to the energy-technology management problem
    Stoyan, Stephen J.
    Dessouky, Maged M.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (03) : 594 - 606
  • [40] A MIXED-INTEGER PROGRAMMING APPROACH TO THE CLUSTERING PROBLEM
    FREED, N
    GLOVER, F
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1983, 12 (05) : 595 - 607