On the Glivenko-Cantelli problem in stochastic programming: Mixed-integer linear recourse

被引:0
|
作者
Georg Ch. Pflug
Andrzej Ruszczyński
Rüdiger Schultz
机构
[1] Universität Wien,Institut für Statistik und Operations Research
[2] Rutgers University,Department of Management Science and Information Systems
[3] Universität Leipzig,Mathematisches Institut
关键词
Stochastic Programming; Empirical Measures; Uniform Convergence; Value Functions of Mixed-Integer Linear Programs;
D O I
暂无
中图分类号
学科分类号
摘要
Expected recourse functions in linear two-stage stochastic programs with mixed-integer second stage are approximated by estimating the underlying probability distribution via empirical measures. Under mild conditions, almost sure uniform convergence of the empirical means to the original expected recourse function is established.
引用
收藏
页码:39 / 49
页数:10
相关论文
共 50 条
  • [1] On the Glivenko-Cantelli problem in stochastic programming: Mixed-integer linear recourse
    Pflug, GC
    Ruszczynski, A
    Schultz, R
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 47 (01) : 39 - 49
  • [2] On the Glivenko-Cantelli problem in stochastic programming: mixed-integer linear recourse
    Pflug, Georg Ch.
    Ruszczynski, Andrzej
    Schultz, Rudiger
    Mathematical Methods of Operations Research, 47 (01): : 39 - 49
  • [3] On the Glivenko-Cantelli problem in stochastic programming: Linear recourse and extensions
    Pflug, GC
    Ruszczynski, A
    Schultz, R
    MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (01) : 204 - 220
  • [4] THE GLIVENKO-CANTELLI PROBLEM
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1987, 15 (03): : 837 - 870
  • [5] SOLUTION OF THE PROBLEM OF GLIVENKO-CANTELLI
    TALAGRAND, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (09): : 213 - 216
  • [6] The Glivenko-Cantelli problem, ten years later
    Talagrand, M
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) : 371 - 384
  • [7] GLIVENKO-CANTELLI THEOREMS FOR INTEGRATED FUNCTIONALS OF STOCHASTIC PROCESSES
    Lil, Jia
    Zhang, Congshan
    Liu, Yunxiao
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (04): : 1914 - 1943
  • [8] Bivium as a Mixed-Integer Linear Programming Problem
    Borghoff, Julia
    Knudsen, Lars R.
    Stolpe, Mathias
    CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2009, 5921 : 133 - 152
  • [9] Open problem: log n factor in "Local Glivenko-Cantelli"
    Cohen, Doron
    Kontorovich, Aryeh
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [10] Mixed-Integer Linear Programming Formulations for the Software Clustering Problem
    Koehler, Viviane
    Fampa, Marcia
    Araujo, Olinto
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 113 - 135