Complete Stacked Denoising Auto-Encoders for Regression

被引:0
作者
María-Elena Fernández-García
José-Luis Sancho-Gómez
Antonio Ros-Ros
Aníbal R. Figueiras-Vidal
机构
[1] Universidad Politécnica de Cartagena,Tecnologías de la Información y las Comunicaciones
[2] Iberian Lube Base Oils Company,Teoría de la Señal y las Comunicaciones
[3] S.A.,undefined
[4] Valle de Escombreras S/N,undefined
[5] Universidad Carlos III de Madrid,undefined
来源
Neural Processing Letters | 2021年 / 53卷
关键词
Complete auto-encoders; Denoising; Regression; Neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
Complete modified stacked denoising auto-encoder (CMSDAE) machines constitute a version of stacked auto-encoders in which a target estimate is included at the input, and are trained layer-by-layer by minimizing a convex combination of the errors corresponding to the input sample and the target. This permits to carry out the transformation of the observation space without forgetting what the target is. It has been shown in recent publications that this method produces a clear performance advantage in classification tasks. The above facts motivate to explore whether CMSDAE machines also offer performance improvements in regression problems, and in particular for time series prediction where conventional discriminative machines find difficulties: The layer-by-layer reconstruction of the target (together with the input) can help to reduce these difficulties. This contribution presents the CMSDAE regression/prediction machines and their design, showing experimental evidence of their frequent superior performance —never lower— with respect to other machine architectures. Some subsequent research directions are indicated together with the conclusions.
引用
收藏
页码:787 / 797
页数:10
相关论文
共 74 条
[1]  
Bourlard H(1988)Auto-association by multilayer perceptrons and singular value decomposition Biol Cybern 59 291-294
[2]  
Kamp Y(2010)Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion J Mach Learn Res 11 3371-3408
[3]  
Vincent P(2013)Representation learning: a review and new perspectives IEEE Trans Pattern Anal Mach Intell 35 1798-1828
[4]  
Larochelle H(2015)Deep learning applications and challenges in big data analytics J Big Data 2 1-9
[5]  
Lajoie I(2015)Why deep learning works: a manifold disentanglement perspective IEEE Trans Neural Netw Learn Syst 27 1997-2008
[6]  
Bengio Y(2018)Multitask autoencoder model for recovering human poses IEEE Trans Ind Electron 65 5060-5068
[7]  
Manzagol PA(2018)Deep learning based communication over the air IEEE J Selected Topics Signal Process 12 132-143
[8]  
Bengio Y(2018)Semisupervised deep reinforcement learning in support of IoT and smart city services IEEE Internet of Things J 5 624-635
[9]  
Courville A(2017)Deep multimodal distance metric learning using click constraints for image ranking IEEE Trans Cybern 47 4014-4024
[10]  
Vincent P(2019)Stacked denoising extreme learning machine autoencoder based on graph embedding for feature representation IEEE Access 7 13433-13444