A fast transform for spherical harmonics

被引:0
作者
Martin J. Mohlenkamp
机构
[1] Yale University,Department of Mathematics
[2] University of Colorado,Department of Applied Mathematics
来源
Journal of Fourier Analysis and Applications | 1999年 / 5卷
关键词
Primary 65T20; secondary 42C10; 33C55; spherical harmonics; fast transforms; associated Legendre functions;
D O I
暂无
中图分类号
学科分类号
摘要
Spherical harmonics arise on the sphere S2 in the same way that the (Fourier) exponential functions {eikθ}k∈ℤ arise on the circle. Spherical harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform (FFT). Without a fast transform, evaluating (or expanding in) spherical harmonic series on the computer is slow—for large computations probibitively slow. This paper provides a fast transform.
引用
收藏
页码:159 / 184
页数:25
相关论文
共 20 条
[1]  
Alpert B.(1991)A fast algorithm for the evaluation of Legendre expansions SIAM J. Sci. Stat. Comp. 12 158-179.
[2]  
Rokhlin V.(1993)Fast numerical computations of oscillatory integrals related to acoustic scattering Appl. Comp. Harmon. Anal. 1 94-99
[3]  
Bradie B.(1991)Fast wavelet transforms and numerical algorithms Comm. Pure Appl. Math. 44 141-183
[4]  
Coifman R.(1985)Solar rotation as a function of depth and latitude Nature 317 591-594
[5]  
Grossmann A.(1991)Remarques sur l'analyse de Fourier à fenêtre C.R. Académie des Sciences 312 259-261
[6]  
Beylkin G.(1989)A test of a modified algorithm for computing spherical harmonic coefficients using an fft J. Comp. Phys. 80 506-511
[7]  
Coifman R.(1994)Computing Fourier transforms and convolutions on the 2-sphere Adv. in Appl. Math. 15 202-250
[8]  
Rokhlin V.(1985)Computation of spherical harmonic expansion coefficients via fft's J. Comp. Phys. 57 439-453
[9]  
Brown T.M.(1996)Optimized local trigonometric bases Appl. Comp. Harmon. Anal. 3 301-323
[10]  
Coifman R.R.(1996)A fast algorithm for adapted time-frequency tilings Appl. Comp. Harmon. Anal. 3 91-99