Kolmogorov and Nekhoroshev theory for the problem of three bodies

被引:0
作者
Antonio Giorgilli
Ugo Locatelli
Marco Sansottera
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
[2] Università degli Studi di Roma “Tor Vergata”,Dipartimento di Matematica
来源
Celestial Mechanics and Dynamical Astronomy | 2009年 / 104卷
关键词
Perturbation theory; KAM theory; Nekhoroshev theory; Exponential stability; Kolmogorov theorem; Sun–Jupiter–Saturn system;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the long time stability in Nekhoroshev’s sense for the Sun– Jupiter–Saturn problem in the framework of the problem of three bodies. Using computer algebra in order to perform huge perturbation expansions we show that the stability for a time comparable with the age of the universe is actually reached, but with some strong truncations on the perturbation expansion of the Hamiltonian at some stage. An improvement of such results is currently under investigation.
引用
收藏
页码:159 / 173
页数:14
相关论文
共 60 条
[1]  
Arnold V.I.(1963)Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian Usp. Mat. Nauk. 18 13-194
[2]  
Carpino M.(1987)Long term numerical integration and synthetic theories for the motion of outer planets Astron Astrophys 181 182-58
[3]  
Milani A.(1991)On the stability of the Lagrangian points in the spatial restricted problem of three bodies Celest. Mech. Dyn. Astr. 50 31-134
[4]  
Nobili A.(2007)KAM stability and celestial mechanics Mem. Amer. Math. Soc. 187 1-412
[5]  
Celletti A.(2000)Improved estimates on the existence of invariant tori for Hamiltonian systems Nonlinearity 13 397-8660
[6]  
Giorgilli A.(2003)Non-convergence of formal integrals of motion J. Phys. A: Math. Gen. 36 8639-68
[7]  
Celletti A.(2008)On the connection between the Nekhoroshev theorem and Arnold diffusion Celest. Mech. Dyn. Astr. 102 49-271
[8]  
Chierchia L.(2005)Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion Mon. Not. R. Astron. Soc. 364 253-10858
[9]  
Celletti A.(2004)Non-convergence of formal integrals of motion II: Improved estimates for the optimal order of truncation J. Phys. A: Math. Gen. 37 10831-1582
[10]  
Giorgilli A.(2005)Démonstration du “théorème d’Arnold” sur la stabilité du système planétaire (d’après Michael Herman) Ergodic Theory Dyn. Sys. 24 1521-1734