Existence of Two Non-zero Weak Solutions for a Nonlinear Navier Boundary Value Problem Involving the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-Biharmonic

被引:0
作者
Gabriele Bonanno
Antonia Chinnì
Donal O’Regan
机构
[1] University of Messina,Department of Engineering
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
关键词
-Biharmonic type operators; Navier boundary value problem; Variational methods;
D O I
10.1007/s10440-019-00251-7
中图分类号
学科分类号
摘要
We study the existence of two non-zero solutions for a class of elliptic Navier boundary value problems in which the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-biharmonic operator arises. The approach is based on variational methods.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 36 条
  • [1] Afrouzi G.(2015)Existence and non-existence of solutions for a Electron. J. Differ. Equ. 2015 2992-3007
  • [2] Mirzapour M.(2012)-biharmonic problem Nonlinear Anal. 75 449-464
  • [3] Chung N.T.(2015)A critical point theorem via the Ekeland variational principle Electron. J. Qual. Theory Differ. Equ. 33 6360-6369
  • [4] Bonanno G.(2016)Existence results for a two point boundary value problem involving a fourth-order equation Z. Anal. Anwend. 35 269-280
  • [5] Bonanno G.(2012)Two non-zero solutions for elliptic Dirichlet problems Nonlinear Anal. 75 179-192
  • [6] Chinnì A.(2015)Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the Bull. Iran. Math. Soc. 41 253-264
  • [7] Tersian S.A.(2013)-biharmonic Bol. Soc. Parana. Mat. 31 1-9
  • [8] Bonanno G.(2016)Multiple solutions for a perturbed Navier boundary value problem involving the p-biharmonic Opusc. Math. 36 57-71
  • [9] D’Aguì G.(2011)Existence of solutions for a boundary problem involving p(x)-biharmonic operator Int. J. Nonlinear Anal. Appl. 2011 1339-1347
  • [10] Candito P.(2013)Multiple solutions for fourth order elliptic problems with Bull. Korean Math. Soc. 50 796-805