Second Hankel Determinant for a Certain Subclass of Bi-univalent Functions

被引:0
作者
Nizami Mustafa
Gangadharan Mrugusundaramoorthy
Thambidurai Janani
机构
[1] Kafkas University,Department of Mathematics, Faculty of Science and Letters
[2] VIT University,School of Advanced Sciences
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Univalent function; analytic function; bi-univalent function; Hankel determinant; Primary 30C45; 30C50; Secondary 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a subclass of analytic and bi-univalent functions in the open unit disk. Here, we give upper bound estimates for the second Hankel determinant of the functions that belong to this class. Some interesting applications and conclusions of the results obtained in this paper are also discussed.
引用
收藏
相关论文
共 43 条
[1]  
Brannan DA(1986)On some classes of bi-univalent functions Stud. Univ. Babes-Bolyai Math. 31 70-77
[2]  
Taha TS(2015)Second Hankel determinant for bi-stalike and bi-convex functions of order Appl. Math. Comput. 271 301-307
[3]  
Deniz E(1933)Eine Bemerkung über ungerade schichte Funktionen J. Lond. Math. Soc. 8 85-89
[4]  
Çağlar M(1957)The coefficient regions of starlike functions Pacific J. Math. 7 1381-1389
[5]  
Orhan H(1960)Extremal problems in the class of starlike functions Proc. Am. Math. Soc. 11 741-749
[6]  
Fekete M(2012)An unified approach to the FeketeSzeg problem Appl. Math. Comput. 218 8453-8461
[7]  
Szegö G(1996)Differential subordinations and geometric means Complex Var Theory Appl Int J 28 201-209
[8]  
Hummel J(2015)Verification of Brannan and Clunies conjecture for certain subclasses of bi-univalent function Ann. Polon. Math. 113 295-304
[9]  
Hummel J(1969)A coefficient inequality for certain classes of analytic functions Proc. Am. Math. Soc. 20 8-12
[10]  
Kanas S(1967)On a coefficient problem for bi-univalent functions Proc. Am. Math. Soc. 18 63-68