Scattering amplitudes and BCFW recursion in twistor space

被引:0
|
作者
Lionel Mason
David Skinner
机构
[1] University of Oxford,The Mathematical Institute
[2] Institut des Hautes Études Scientifiques,undefined
[3] Le Bois Marie,undefined
来源
Journal of High Energy Physics | / 2010卷
关键词
Supersymmetric gauge theory; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Twistor ideas have led to a number of recent advances in our understanding of scattering amplitudes. Much of this work has been indirect, determining the twistor space support of scattering amplitudes by examining the amplitudes in momentum space. In this paper, we construct the actual twistor scattering amplitudes themselves. We show that the recursion relations of Britto, Cachazo, Feng and Witten have a natural twistor formulation that, together with the three-point seed amplitudes, allows us to recursively construct general tree amplitudes in twistor space. We obtain explicit formulae for n-particle MHV and NMHV super-amplitudes, their CPT conjugates (whose representations are distinct in our chiral framework), and the eight particle N2MHV super-amplitude. We also give simple closed form formulae for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 8 $\end{document} supergravity recursion and the MHV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \overline {\text{MHV}} $\end{document} amplitudes. This gives a formulation of scattering amplitudes in maximally supersymmetric theories in which superconformal symmetry and its breaking is manifest.
引用
收藏
相关论文
共 50 条
  • [21] On form factors and correlation functions in twistor space
    Laura Koster
    Vladimir Mitev
    Matthias Staudacher
    Matthias Wilhelm
    Journal of High Energy Physics, 2017
  • [22] The connected prescription for form factors in twistor space
    A. Brandhuber
    E. Hughes
    R. Panerai
    B. Spence
    G. Travaglini
    Journal of High Energy Physics, 2016
  • [23] The connected prescription for form factors in twistor space
    Brandhuber, A.
    Hughes, E.
    Panerai, R.
    Spence, B.
    Travaglini, G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):
  • [24] Recursion relations for gauge theory amplitudes with massive vector bosons and fermions
    Badger, SD
    Glover, EWN
    Khoze, VV
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01):
  • [25] A note on polytopes for scattering amplitudes
    N. Arkani-Hamed
    J. Bourjaily
    F. Cachazo
    A. Hodges
    J. Trnka
    Journal of High Energy Physics, 2012
  • [26] Scattering amplitudes and toric geometry
    Antonio Amariti
    Davide Forcella
    Journal of High Energy Physics, 2013
  • [27] A note on polytopes for scattering amplitudes
    Arkani-Hamed, N. .
    Bourjaily, J.
    Cachazo, F. .
    Hodges, A. .
    Trnka, J. .
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [28] Scattering amplitudes and toric geometry
    Amariti, Antonio
    Forcella, Davide
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [29] Positivity properties of scattering amplitudes
    Johannes Henn
    Prashanth Raman
    Journal of High Energy Physics, 2025 (4)
  • [30] Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory
    Dolan, Louise
    Goddard, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):