Binary transformations and (2+1)-dimensional integrable systems

被引:0
作者
Sydorenko Yu.M. [1 ]
机构
[1] Lviv University, Lviv
关键词
Evolution Equation; Explicit Form; Integrable System; Nonlinear Model; Matrix Equation;
D O I
10.1023/A:1024048625927
中图分类号
学科分类号
摘要
A class of nonlinear nonlocal mappings that generalize the classical Darboux transformation is constructed in explicit form. Using as an example the well-known Davey-Stewartson (DS) nonlinear models and the Kadomtsev-Petviashvili matrix equation (MKP), we demonstrate the efficiency of the application of these mappings in the (2+1)-dimensional theory of solitons. We obtain explicit solutions of nonlinear evolution equations in the form of a nonlinear superposition of linear waves. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:1859 / 1884
页数:25
相关论文
共 51 条
  • [1] Ibragimov N.Kh., Groups of Transformations in Mathematical Physics [in Russian], (1983)
  • [2] Dickey L.A., Soliton equations and Hamiltonian systems, Adv. Math. Phys., 12, pp. 1-310, (1991)
  • [3] Matveev V.B., Salle M.A., Darboux Transformations and Solitons, (1991)
  • [4] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Theory of Solitons. Method of Inverse Problem [in Russian], (1980)
  • [5] Solitons, (1980)
  • [6] Nizhnik L.P., Inverse Scattering Problems for Hyperbolic Equations [in Russian], (1991)
  • [7] Zakharov V.E., Shabat A.B., Scheme of integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funkts. Anal. Prilozhen., 8, 3, pp. 43-53, (1974)
  • [8] Samoilenko A.M., Samoilenko V.H., Sydorenko Yu.M., Hierarchy of the Kadomtsev-Petviashvili equations under non-local constraints: Many-dimensional generalizations and exact solutions of reduced systems, Ukr. Mat. Zh., 51, 1, pp. 78-97, (1999)
  • [9] Konopelchenko B., Sidorenko Yu., Strampp W., (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems, Phys. Lett. A, 157, pp. 17-21, (1991)
  • [10] Sidorenko Yu., Strampp W., Symmetry constraints of the KP-hierarchy, Inverse Problems, 7, pp. 37-43, (1991)