Embedding Bergman spaces into tent spaces

被引:0
作者
José Ángel Peláez
Jouni Rättyä
Kian Sierra
机构
[1] Universidad de Málaga,Departamento de Análisis Matemático
[2] University of Eastern Finland,Department of Physics and Mathematics
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Tent space; Carleson measure; Area operator; Integral operator; Bergman space; Hardy space; Primary 32A36; 47G10; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p_\omega $$\end{document} denote the Bergman space in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} of the complex plane induced by a radial weight ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} with the doubling property ∫r1ω(s)ds≤C∫1+r21ω(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{r}^1\omega (s)\,ds\le C\int _{\frac{1+r}{2}}^1\omega (s)\,ds$$\end{document}. The tent space Tsq(ν,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^q_s(\nu ,\omega )$$\end{document} consists of functions such that ‖f‖Tsq(ν,ω)q=∫D∫Γ(ζ)|f(z)|sdν(z)qsω(ζ)dA(ζ)<∞,0<q,s<∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned} \Vert f\Vert _{T^q_s(\nu ,\omega )}^q =\int _\mathbb {D}\left( \int _{\varGamma (\zeta )}|f(z)|^s\,d\nu (z)\right) ^\frac{q}{s}\omega (\zeta )\,dA(\zeta ) <\infty ,\quad 0<q, \; s<\infty . \end{aligned} \end{aligned}$$\end{document}Here Γ(ζ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\zeta )$$\end{document} is a non-tangential approach region with vertex ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} in the punctured unit disc D\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}{\setminus }\{0\}$$\end{document}. We characterize the positive Borel measures ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} such that Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p_\omega $$\end{document} is embedded into the tent space Tsq(ν,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^q_s(\nu ,\omega )$$\end{document}, where 1+sp-sq>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{s}{p}-\frac{s}{q}>0$$\end{document}, by considering a generalized area operator. The results are provided in terms of Carleson measures for Aωp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p_\omega $$\end{document}.
引用
收藏
页码:1215 / 1237
页数:22
相关论文
共 17 条
  • [1] Cascante C(2003)Imbedding potentials in tent spaces J. Funct. Anal. 198 106-141
  • [2] Ortega J(1997)Generalized area operators on Hardy spaces J. Math. Anal. Appl. 216 112-121
  • [3] Cohn WS(2000)Factorization of tent spaces and Hankel operators J. Funct. Anal. 175 308-329
  • [4] Cohn WS(1985)Some new functions spaces and their applications to Harmonic analysis J. Funct. Anal. 62 304-335
  • [5] Verbitsky IE(1972) spaces of several variables Acta Math. 129 137-193
  • [6] Coifman RR(2010)Area operators from Sci. China Math. 53 357-366
  • [7] Meyer Y(1991) spaces to Proc. Lond. Math. Soc. 63 595-619
  • [8] Stein EM(1993) spaces Mich. Math. J. 40 333-358
  • [9] Fefferman C(2015)Embedding derivatives of Hardy spaces into Lebesgue spaces Math. Ann. 362 205-239
  • [10] Stein EM(undefined)Embedding theorems for spaces of analytic functions via Khinchine’s inequality undefined undefined undefined-undefined