Classification of Ruled Surfaces as Homothetic Self-Similar Solutions of the Inverse Mean Curvature Flow in the Lorentz–Minkowski 3-Space

被引:0
作者
Gregório Silva
Vanessa Silva
机构
[1] Universidade Federal de Alagoas,Instituto de Matemática
[2] Instituto Federal de Alagoas,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2023年 / 54卷
关键词
Ruled surface; Inverse mean curvature flow; Lorentz-Minkowski space; Self-expander; Self-shrinker; 53E10; 53C50; 53C42; 53B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we classify the nondegenerate ruled surfaces in the three-dimensional Lorentz–Minkowski space that are homothetic self-similar solutions for the inverse mean curvature flow. This classification shows the existence of two classes of non-cylindrical homothetic solitons: one with lightlike rulings and another one with non-lightlike rulings.
引用
收藏
相关论文
共 30 条
[1]  
Ali AT(2020)Non-lightlike constant angle ruled surfaces in Minkowski 3-space J. Geom. Phys. 157 10-4
[2]  
Castro I(2017)Lagrangian homothetic solitons for the inverse mean curvature flow Results Math. 71 3-285
[3]  
Lerma AM(2023)Self-similar solutions to the curvature flow and its inverse on the 2-dimensional light cone Ann. Mat. 202 253-320
[4]  
da Silva FN(2022)Inverse mean curvature evolution of entire graphs Calc. Var. Partial Differ. Equ. 2 53-255
[5]  
Tenenblat K(1999)Ruled Weingarten surfaces in Minkowski 3-space Manuscr. Math. 98 307-326
[6]  
Daskalopoulos P(1995)Ruled surfaces of finite type in 3- dimensional minkowski space Results. Math. 27 250-1902
[7]  
Huisken G(2016)Solitons for the inverse mean curvature flow Pac. J. Math. 284 309-3911
[8]  
Dillen F(2012)Minimal ruled submanifolds in Minkowski space J. Geom. Phys. 62 1893-205
[9]  
Kuhnel W(2019)Invariant homothetic solitons for inverse mean curvature flow in Nonlinearity 32 3873-100
[10]  
Dillen F(2000)Ruled surfaces with pointwise 1-type Gauss map J. Geom. Phys. 34 191-214