Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

被引:0
作者
A.-D. Brown
S. R. Bandler
R. Brekosky
J. A. Chervenak
E. Figueroa-Feliciano
F. Finkbeiner
N. Iyomoto
R. L. Kelley
C. A. Kilbourne
F. S. Porter
S. Smith
T. Saab
J. Sadleir
机构
[1] NASA Goddard Space Flight Center,Department of Physics
[2] Massachusetts Institute of Technology,Department of Physics and Astronomy
[3] Johns Hopkins University,Department of Physics
[4] University of Florida,Department of Physics
[5] University of Illinois Urbana-Champaign,undefined
来源
Journal of Low Temperature Physics | 2008年 / 151卷
关键词
Transition-edge sensors; Calorimeters; Electroplating; 73.50.-h; 81.15.Pq; 95.90.+v;
D O I
暂无
中图分类号
学科分类号
摘要
Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for X-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber X-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8×8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution X-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.4 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 5.9 keV have been fabricated.
引用
收藏
页码:413 / 417
页数:4
相关论文
共 50 条
[21]   Transition-edge sensor detectors for the Origins Space Telescope [J].
Nagler, Peter C. ;
Sadleir, John E. ;
Wollack, Edward J. .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2021, 7 (01)
[22]   Large-Absorber TES X-ray Microcalorimeters and the Micro-X Detector Array [J].
Eckart, M. E. ;
Adams, J. S. ;
Bandler, S. R. ;
Brekosky, R. P. ;
Brown, A-D ;
Chervenak, J. A. ;
Ewin, A. J. ;
Finkbeiner, F. M. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
Porter, F. S. ;
Sadleir, J. E. ;
Smith, S. J. ;
Figueroa-Feliciano, E. ;
Wikus, P. .
LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 :699-+
[23]   A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Demonstration of the 1,000-Element Transition-Edge Sensor Subarray [J].
Szypryt, Paul ;
Nakamura, Nathan ;
Becker, Daniel T. ;
Bennett, Douglas A. ;
Dagel, Amber L. ;
Doriese, W. Bertrand ;
Fowler, Joseph W. ;
Gard, Johnathon D. ;
Harris, J. Zachariah ;
Hilton, Gene C. ;
Imrek, Jozsef ;
Jimenez, Edward S. ;
Larson, Kurt W. ;
Levine, Zachary H. ;
Mates, John A. B. ;
McArthur, D. ;
Miaja-Avila, Luis ;
Morgan, Kelsey M. ;
O'Neil, Galen C. ;
Ortiz, Nathan J. ;
Pappas, Christine G. ;
Schmidt, Daniel R. ;
Thompson, Kyle R. ;
Ullom, Joel N. ;
Vale, Leila ;
Vissers, Michael R. ;
Walker, Christopher ;
Weber, Joel C. ;
Wessels, Abigail L. ;
Wheeler, Jason W. ;
Swetz, Daniel S. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
[24]   Performance of the SRON Ti/Au Transition Edge Sensor X-ray Calorimeters [J].
de Wit, Martin ;
Gottardi, Luciano ;
Nagayoshi, Kenichiro ;
Akamatsu, Hiroki ;
Bruijn, Marcel P. ;
Ridder, Marcel L. ;
Taralli, Emanuele ;
Vaccaro, Davide ;
Gao, Jian-Rong ;
den Herder, Jan-Willem A. .
SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY, 2022, 12181
[25]   GPU Supported Simulation of Transition-Edge Sensor Arrays [J].
Lorenz, M. ;
Kirsch, C. ;
Merino-Alonso, P. E. ;
Peille, P. ;
Dauser, T. ;
Cucchetti, E. ;
Smith, S. J. ;
Wilms, J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 200 (5-6) :277-285
[26]   Simulation Software for Transition-Edge Sensor Performance Prediction [J].
Garrone, H. ;
Pepe, C. ;
Reineri, A. ;
Monticone, E. ;
Filippo, R. ;
Rajteri, M. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (04)
[27]   GPU Supported Simulation of Transition-Edge Sensor Arrays [J].
M. Lorenz ;
C. Kirsch ;
P. E. Merino-Alonso ;
P. Peille ;
T. Dauser ;
E. Cucchetti ;
S. J. Smith ;
J. Wilms .
Journal of Low Temperature Physics, 2020, 200 :277-285
[28]   Large, Thin, and Corrugated Gold Absorbers for Transition Edge Sensor Microcalorimeters [J].
Ambarish, C. V. ;
Jaeckel, Felix T. ;
John, Elisa ;
Liu, Wei ;
McCammon, Dan ;
Roy, Avirup ;
Stueber, Haley R. ;
Wang, Zelong ;
Yan, Thomas .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
[29]   Progress toward optimizing energy and arrival-time resolution with a transition-edge sensor from simulations of x-ray-photon events [J].
Ripoche, Paul ;
Heyl, Jeremy .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2021, 7 (01)
[30]   Proximity effect model for x-ray Transition Edge Sensors [J].
Harwin, R. C. ;
Goldie, D. J. ;
Withington, S. ;
Khosropanah, P. ;
Gottardi, L. ;
Gao, J. -R. .
HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VIII, 2018, 10709