Volumetric Investigations on Molecular Interactions of Glycine/l-alanine in Aqueous Citric Acid Solutions at Different Temperatures

被引:0
作者
Poonam Patyar
Gurpreet Kaur
Tarnveer Kaur
机构
[1] Punjabi University,Department of Chemistry
来源
Journal of Solution Chemistry | 2018年 / 47卷
关键词
Hydration number; Interaction coefficients; Partial molar expansibilities; Partial molar volumes; Partial molar volumes of transfer; Apparent specific volumes;
D O I
暂无
中图分类号
学科分类号
摘要
Apparent molar volumes (ϕV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi_{V})$$\end{document} of glycine/l-alanine in water and in aqueous citric acid (CA) solutions of varying concentrations, i.e. (0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) mol·kg−1 were determined from density measurements at temperatures T = (288.15, 298.15, 308.15, 310.15 and 318.15) K and at atmospheric pressure. Limiting partial molar volumes (ϕVo)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi_V^{\text{o}})$$\end{document} and their corresponding partial molar volumes of transfer (ΔtrϕV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta_{\text{tr}} \phi_{V} )$$\end{document} have been calculated from the ϕV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{V}$$\end{document} data. The negative ΔtrϕV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{\text{tr}} \phi_{V}$$\end{document} values obtained for glycine/l-alanine from water to aqueous CA solutions indicate the dominance of hydrophilic–hydrophobic/hydrophobic–hydrophilic and hydrophobic–hydrophobic interactions over ion/hydrophilic–dipolar interactions. Further, pair and triplet interaction coefficients, i.e.(VAB)and(VABB)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_{\text{AB}} )\;{\text{and}}\; (V_{\text{ABB}} )$$\end{document} along with hydration number (nH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_{\text{H}} )$$\end{document} have also been calculated. The effect of temperature on the volumetric properties of glycine/l-alanine in water and in aqueous CA solutions has been determined from the limiting partial molar expansibilities (∂ϕVo/∂T)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial \phi_{V}^{\text{o}} /\partial T)_{p}$$\end{document} and their second-order derivative (∂2ϕVo/∂T2)P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial^{2} \phi_{V}^{\text{o}} /\partial T^{2} )_{{P}}$$\end{document}. The apparent specific volumes (νϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu_{\phi} )$$\end{document} for glycine and l-alanine tend to approach sweet taste behavior both in the presence of water and in aqueous CA solutions. The νϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{\phi}$$\end{document} values for glycine/l-alanine increase with increase in concentration of CA at all temperatures studied. This reveals that CA helps in enhancing the sweet taste behavior of glycine/l-alanine which also supports the dominance of hydrophobic–hydrophobic interactions.
引用
收藏
页码:2039 / 2067
页数:28
相关论文
共 145 条
[1]  
Wu G(2009)Amino acids: metabolism, functions and nutrition Amino Acids 37 1-17
[2]  
Chalikian TV(1998)Thermodynamic analysis of biomolecules: a volumetric approach Curr. Opin. Struct. Biol. 8 657-664
[3]  
Breslauer K(2017)Volumetric and viscometric properties of amino acids in aqueous maltitol solutions at J. Chem. Thermodyn. 111 52-64
[4]  
Zhang J(2017) = (293.15–323.15) K J. Chem. Thermodyn. 111 115-128
[5]  
Zhu C(2006)Mode of action of betadine on some amino acids and globular proteins: thermodynamic considerations J. Biophys. Chem. 122 157-183
[6]  
Ma Y(2012)Viscosity J. Chem. Thermodyn. 45 114-120
[7]  
Thoppil AA(2001)-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization J. Chem. Eng. Data 46 217-222
[8]  
Judy E(2010)Study of thermodynamic properties of aqueous binary mixtures of glycine, J. Chem. Eng. Data 55 4864-4871
[9]  
Kishore N(2017)-alanine and β-alanine at low temperatures ( J. Chem. Thermodyn. 110 25-32
[10]  
Zhao H(2015) = 275.15, 279.15 and 283.15) K J. Mol. Liq. 212 656-664