Riesz Potential and Maximal Function for Dunkl transform

被引:0
作者
D. V. Gorbachev
V. I. Ivanov
S. Yu. Tikhonov
机构
[1] Tula State University,Department of Applied Mathematics and Computer Science
[2] Centre de Recerca Matemàtica,undefined
[3] ICREA,undefined
[4] and Universitat Autònoma de Barcelona,undefined
来源
Potential Analysis | 2021年 / 55卷
关键词
Dunkl transform; Generalized translation operator; Convolution; Riesz potential; 42B10; 33C45; 33C52;
D O I
暂无
中图分类号
学科分类号
摘要
We study weighted (Lp, Lq)-boundedness properties of Riesz potentials and fractional maximal functions for the Dunkl transform. In particular, we obtain the weighted Hardy–Littlewood–Sobolev type inequality and weighted week (L1, Lq) estimate. We find a sharp constant in the weighted Lp-inequality, generalizing the results of W. Beckner and S. Samko.
引用
收藏
页码:513 / 538
页数:25
相关论文
共 44 条
  • [11] Gadjiev AD(1977)Spectral theory of the operator (p2 + m2)1/2 − Ze2/r Commun. Math. Phys. 53 285-294
  • [12] Guliyev VS(1983)Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities Ann. Math. 2 349-374
  • [13] Serbetci A(1963)Generalized Liouville differentiation and function spaces ${L^{r}_{p}}(E_{n})$Lpr(En). Embedding theorems Sb. Math. 60 325-353 (in Russian)
  • [14] Guliyev EV(2007)Bessel harmonic analysis and approximation of functions on the half-line Izv. Math. 71 1001-1048
  • [15] Graczyk P(1949)L’integrale de Riemann-Liouville et le probleme de Cauchy Acta Math. 1 1-222
  • [16] Luks T(1998)Generalized Hermite polynomials and the heat equation for Dunkl operators Commun. Math Phys. 192 519-542
  • [17] Rösler M(1999)Positivity of Dunkl’s intertwinning operator Duke Math. J. 98 445-463
  • [18] Gorbachev DV(2003)A positive radial product formula for the Dunkl kernel Trans. Am. Math. Soc. 355 2413-2438
  • [19] Ivanov VI(2005)Best constant in the weighted Hardy inequality: the spatial and spherical version Fract. Calc. Anal. Appl. 8 39-52
  • [20] Tikhonov SYu(1984)A two weight weak type inequality for fractional integrals Trans. Am. Math. Soc. 281 339-345