Refinement of some inequalities concerning to Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document}-operator of polynomials with restricted zeros

被引:0
作者
Idrees Qasim
A. Liman
W. M. Shah
机构
[1] National Institute of Technology,Department of Mathematics
[2] Jammu and Kashmir Institute of Mathematical Sciences,undefined
关键词
operator; Complex polynomials; Inequalities; Zeros; 30A06; 30A64;
D O I
10.1007/s10998-016-0150-3
中图分类号
学科分类号
摘要
If F(z) is a polynomial of degree n having all zeros in |z|≤k,k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|\le k,~k>0$$\end{document} and f(z) is a polynomial of degree m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document} such that |f(z)|≤|F(z)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f(z)|\le |F(z)|$$\end{document} for |z|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=k$$\end{document}, then it was formulated by Rather and Gulzar (Adv Inequal Appl 2:16–30, 2013) that for every |δ|≤1,|β|≤1,R>r≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\delta |\le 1, |\beta |\le 1,~R>r\ge k$$\end{document} and |z|≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|\ge 1,$$\end{document}|B[foσ](z)+ψB[foρ](z)|≤|B[Foσ](z)+ψB[Foρ](z)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |B[fo\sigma ](z)+\psi B[fo\rho ](z)|\le |B[Fo\sigma ](z)+\psi B[Fo\rho ](z)|, \end{aligned}$$\end{document}where B is a Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document} operator, σ(z)=Rz,ρ(z)=rz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (z){=}Rz, \rho (z){=}rz$$\end{document} and ψ:=ψ(R,r,δ,β,k)=β{(R+kr+k)n-|δ|}-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi {:=}\psi (R,r,\delta ,\beta ,k) {=}\beta \bigg \{\bigg (\frac{R+k}{r+k}\bigg )^{n}{-}|\delta |\bigg \}{-}\delta $$\end{document}. The authors have assumed that B∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in B_{n}$$\end{document} is a linear operator which is not true in general. In this paper, besides discussing assumption of authors and their followers (see e.g, Rather et al. in Int J Math Arch 3(4):1533–1544, 2012), we present the correct proof of the above inequality. Moreover our result improves many prior results involving Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document} operators and a number of polynomial inequalities can also be deduced by a uniform procedure.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 19 条
  • [1] Ankeny NC(1955)On the theorem of S. Bernstein Pac. J. Math. 5 849-852
  • [2] Rivilin TJ(1912)Sur eordre de la meilleure approximation des functions continues par des polynomes de degre donne Mem. Acad. R. Belg. 4 1103-340
  • [3] Bernstein SN(1930)Sur la limitation des derives des polynomes C. R. Acad. Sci. Paris 190 338-99
  • [4] Bernstein SN(1985)New inequalities for polynomials Trans. Am. Math. Soc. 288 69-513
  • [5] Frappier C(1944)Proof of a conjecture of P. Erdös on the derivative of a polynomial Bull. Am. Math. Soc. (N.S) 50 509-955
  • [6] Rahman QI(2010)Inequalities for polynomials not vanishing in a disk Appl. Math. Comput. 218 949-309
  • [7] Ruscheweyh St(1969)Functions of exponential type Trans. Am. Math. Soc. 135 295-1544
  • [8] Lax PD(2012)Inequalities concerning the B-operators Int. J. Math. Arch. 3 1533-30
  • [9] Liman A(2013)On an operator preserving inequalities between polynomials Adv. Inequal. Appl. 2 16-16
  • [10] Mohapatra RN(2008)An operator preserving inequalities between polynomials J. Inequal. Pure Appl. Math. 9 1-undefined