Uniform central limit theorems for kernel density estimators

被引:0
作者
Evarist Giné
Richard Nickl
机构
[1] University of Connecticut,Department of Mathematics
来源
Probability Theory and Related Fields | 2008年 / 141卷
关键词
Primary: 62G07; Secondary: 60F05; Kernel density estimation; Uniform central limit theorem; Plug-in property; Smoothed empirical processes;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}_{n} \ast K_{h_{n}}(x) = n^{-1}h_{n}^{-d}\sum_{i=1}^{n}K\left((x-X_{i})/h_{n}\right)$$\end{document} be the classical kernel density estimator based on a kernel K and n independent random vectors Xi each distributed according to an absolutely continuous law \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{d}$$\end{document} . It is shown that the processes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \longmapsto \sqrt{n}\int fd({\mathbb{P}}_{n} \ast K_{h_{n}}-{\mathbb{P}})$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in {\mathcal{F}}$$\end{document} , converge in law in the Banach space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{\infty }({\mathcal{F}})$$\end{document} , for many interesting classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} of functions or sets, some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document} -Donsker, some just \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document} -pregaussian. The conditions allow for the classical bandwidths hn that simultaneously ensure optimal rates of convergence of the kernel density estimator in mean integrated squared error, thus showing that, subject to some natural conditions, kernel density estimators are ‘plug-in’ estimators in the sense of Bickel and Ritov (Ann Statist 31:1033–1053, 2003). Some new results on the uniform central limit theorem for smoothed empirical processes, needed in the proofs, are also included.
引用
收藏
页码:333 / 387
页数:54
相关论文
共 19 条
[1]  
Alexander K.S.(1987)Central limit theorems for stochastic processes under random entropy conditions Probab. Theory Relat. Fields 75 351-378
[2]  
Bickel J.P.(2003)Nonparametric estimators which can be ‘plugged-in’ Ann. Statist. 31 1033-1053
[3]  
Ritov Y.(1973)Sample functions of the Gaussian process Ann. Probab. 1 66-103
[4]  
Dudley R.M.(2006)Concentration inequalities and asymptotic results for ratio type empirical processes Ann. Probab. 34 1143-1216
[5]  
Giné E.(1984)Some limit theorems for empirical processes Ann. Probab. 12 929-989
[6]  
Koltchinskii V.(1986)Empirical processes indexed by Lipschitz functions Ann. Probab. 14 1329-1338
[7]  
Giné E.(1991)Gaussian characterization of uniform Donsker classes Ann. Probab. 19 758-782
[8]  
Zinn J.(1985)Relationships between Donsker classes and Sobolev spaces Z. Wahrsch. Verw. Gebiete 69 323-330
[9]  
Giné E.(2007)Donsker-type theorems for nonparametric maximum likelihood estimators Probab. Theory Relat. Fields 138 411-449
[10]  
Zinn J.(2007)Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type J. Theoret. Probab. 20 177-199