Robust Stackelberg controllability for the Navier–Stokes equations

被引:0
作者
Cristhian Montoya
Luz de Teresa
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
来源
Nonlinear Differential Equations and Applications NoDEA | 2018年 / 25卷
关键词
Robust control; Hierarchic control; Navier–Stokes equations; Carleman estimates; Null controllability; Primary 35Q30; 93B05; 49J20; Secondary 35Q93; 91A65; 93C10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with a robust Stackelberg strategy for the Navier–Stokes system. The scheme is based in considering a robust control problem for the “follower control” and its associated disturbance function. Afterwards, we consider the notion of Stackelberg optimization (which is associated to the “leader control”) in order to deduce a local null controllability result for the Navier–Stokes system.
引用
收藏
相关论文
共 40 条
[1]  
Abergel F(1990)On some control problems in fluid mechanics Theor. Comput. Fluid Dyn. 1 303-325
[2]  
Temam R(2014)On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids Appl. Math. Optim. 70 373-393
[3]  
Araruna FD(2015)Stackelberg–Nash exact controllability for linear and semilinear parabolic equations ESAIM Control Optim. Calc. Var. 21 835-856
[4]  
de Menezes SDB(2000)Existence and uniqueness of optimal control to the Navier–Stokes equations C. R. Acad. Sci. Paris Sér. I Math. 330 1007-1011
[5]  
Rojas-Medar MA(2000)A general framework for robust control in fluid mechanics Physica D 138 360-392
[6]  
Araruna FD(2013)Local null controllability of the J. Math. Fluid Mech. 15 139-153
[7]  
Fernández-Cara E(2014)-dimensional Navier–Stokes system with Invent. Math. 198 833-880
[8]  
Santos MC(2004) scalar controls in an arbitrary control domain J. Math. Pures Appl. (9) 83 1501-1542
[9]  
Bewley T(2006)Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components ESAIM Control Optim. Calc. Var. 12 442-465
[10]  
Temam R(2007)Local exact controllability of the Navier–Stokes system Ann. Inst. H. Poincaré Anal. Non Linéaire 24 1029-1054