Level one Weyl modules for toroidal Lie algebras

被引:0
作者
Ryosuke Kodera
机构
[1] Kobe University,Department of Mathematics, Graduate School of Science
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Toroidal Lie algebra; Weyl module; Character; Vertex operator; Primary 17B67; Secondary 17B10; 17B65; 17B69;
D O I
暂无
中图分类号
学科分类号
摘要
We identify level one global Weyl modules for toroidal Lie algebras with certain twists of modules constructed by Moody–Eswara Rao–Yokonuma via vertex operators for type ADE and by Iohara–Saito–Wakimoto and Eswara Rao for general type. The twist is given by an action of SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SL}_{2}(\mathbb {Z})$$\end{document} on the toroidal Lie algebra. As a by-product, we obtain a formula for the character of the level one local Weyl module over the toroidal Lie algebra and that for the graded character of the level one graded local Weyl module over an affine analog of the current Lie algebra.
引用
收藏
页码:3053 / 3080
页数:27
相关论文
共 40 条
  • [1] Chari V(2010)A categorical approach to Weyl modules Transform. Groups 15 517-549
  • [2] Fourier G(2015)Weyl modules for the hyperspecial current algebra Int. Math. Res. Not. 15 6470-6515
  • [3] Khandai T(2006)Weyl, Demazure and fusion modules for the current algebra of Adv. Math. 207 928-960
  • [4] Chari V(2012)A new class of modules for toroidal Lie superalgebras São Paulo J. Math. Sci. 6 97-115
  • [5] Ion B(2013)Representations of quantum toroidal J. Algebra 380 78-108
  • [6] Kus D(2004)Multi-dimensional Weyl modules and symmetric functions Commun. Math. Phys. 251 427-445
  • [7] Chari V(2007)Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions Adv. Math. 211 566-593
  • [8] Loktev S(2019)Vertex representations for Yangians of Kac–Moody algebras J. École Polytech. Math. 6 665-706
  • [9] Eswara Rao S(2003)Nonsymmetric Macdonald polynomials and Demazure characters Duke Math. J. 116 299-318
  • [10] Feigin B(1999)Hirota bilinear forms with Phys. Lett. A 254 37-46