Moment Formulas for Multitype Continuous State and Continuous Time Branching Process with Immigration

被引:0
作者
Mátyás Barczy
Zenghu Li
Gyula Pap
机构
[1] University of Debrecen,Faculty of Informatics
[2] Beijing Normal University,School of Mathematical Sciences
[3] University of Szeged,Bolyai Institute
来源
Journal of Theoretical Probability | 2016年 / 29卷
关键词
Multitype continuous state and continuous time branching process with immigration; Moments; Comparison theorem; Truncation; 60J80; 60J75; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
Recursions for moments of multitype continuous state and continuous time branching process with immigration are derived. It turns out that the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}th (mixed) moments and the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}th (mixed) central moments are polynomials of the initial value of the process, and their degree is at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and ⌊k/2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor k/2 \rfloor $$\end{document}, respectively.
引用
收藏
页码:958 / 995
页数:37
相关论文
共 20 条
[1]  
Barczy M(2014)Asymptotic behavior of conditional least squares estimators for unstable integer-valued autoregressive models of order 2 Scand. J. Stat. 41 866-892
[2]  
Ispány M(2003)Affine processes and applications in finance Ann. Appl. Probab. 13 984-1053
[3]  
Pap G(2013)Density approximations for multivariate affine jump-diffusion processes J. Econom. 176 93-111
[4]  
Duffie D(2010)Stochastic equations of non-negative processes with jumps Stoch. Process. Appl. 120 306-330
[5]  
Filipović D(2012)Existence results and the moment estimate for nonlocal stochastic differential equations with time-varying delay Nonlinear Anal. Theory Methods Appl. 75 405-416
[6]  
Schachermayer W(1988)Stochastic partial differential equations for some measure-valued diffusions Probab. Theory Rel. Fields 79 201-225
[7]  
Filipović D(2008)Moment estimates for Lévy processes Electr. Commun. Probab. 13 422-434
[8]  
Mayerhofer E(2013)Stochastic equations for two-type continuous-state branching processes with immigration Acta Math. Sin. 29 287-294
[9]  
Schneider P(2010)Moment estimates for solutions of linear stochastic differential equations driven by analytic fractional Brownian motion Electr. Commun. Probab. 15 411-417
[10]  
Fu Z(1975)Some results on continuous time branching processes with state-dependent immigration J. Math. Soc. Jpn. 27 479-496