Existence of Solutions for Nonlinear Nonmonotone Evolution Equations in Banach Spaces with Anti-Periodic Boundary Conditions

被引:0
作者
Sahbi Boussandel
机构
[1] University of Carthage,Faculty of Sciences of Bizerte, Department of Mathematics, 7021 Jarzouna Bizerte
[2] Laboratoire EDP et Applications,undefined
来源
Applications of Mathematics | 2018年 / 63卷
关键词
existence of solutions; anti-periodic; monotone operator; maximal monotone operator; Schaefer fixed-point theorem; monotonicity method; diffusion equation; 35K10; 35K55; 35K57; 35K59; 35K90; 47J35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet p-Laplace operator.
引用
收藏
页码:523 / 539
页数:16
相关论文
共 47 条
  • [1] Aftabizadeh A. R.(1992)On a class of second-order anti-periodic boundary value problems J. Math. Anal. Appl. 171 301-320
  • [2] Aizicovici S.(2001)Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 233-251
  • [3] Pavel N. H.(1991)Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space J. Funct. Anal. 99 387-408
  • [4] Aizicovici S.(2018)Existence of solutions for evolution equations in Hilbert spaces with antiperiodic boundary conditions and applications Appl. Math., Praha 63 423-437
  • [5] McKibben M.(1966)The solution by iteration of nonlinear functional equations in Banach spaces Bull. Am. Math. Soc. 72 571-575
  • [6] Reich S.(2006)Anti-periodic solutions for semilinear evolution equations J. Math. Anal. Appl. 315 337-348
  • [7] Aizicovici S.(2004)Antiperiodic solutions for semilinear evolution equations Math. Comput. Modelling 40 1123-1130
  • [8] Pavel N. H.(2007)Anti-periodic solutions for fully nonlinear first-order differential equations Math. Comput. Modelling 46 1183-1190
  • [9] Boussandel S.(2011)Anti-periodic solutions for evolution equations associated with maximal monotone mappings Appl. Math. Lett. 24 302-307
  • [10] Browder F. E.(2010)Anti-periodic solutions for evolution equations associated with monotone type mappings Appl. Math. Lett. 23 1320-1325