On the existence of solutions for nonhomogeneous Schrödinger-Poisson system

被引:0
作者
Lixia Wang
Shiwang Ma
Xiaoming Wang
机构
[1] Tianjin Chengjian University,School of Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
[3] Shangrao Normal University,School of Mathematics and Computer Science
来源
Boundary Value Problems | / 2016卷
关键词
Schrödinger-Poisson systems; sublinear nonlinearities; concave and convex nonlinearities; variational methods; 35B33; 35J65; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of solutions for the following nonhomogeneous Schrödinger-Poisson systems: (∗){−Δu+V(x)u+K(x)ϕ(x)u=f(x,u)+g(x),x∈R3,−Δϕ=K(x)u2,lim|x|→+∞ϕ(x)=0,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (*) \quad \textstyle\begin{cases} -\Delta u +V(x)u+K(x)\phi(x)u =f(x,u)+g(x), &x\in\mathbb{R}^{3}, \\ -\Delta\phi=K(x)u^{2}, \qquad \lim_{|x|\rightarrow+\infty}\phi(x)=0, & x\in\mathbb{R}^{3}, \end{cases} $$\end{document} where f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x,u)$\end{document} is either sublinear in u as |u|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|u|\rightarrow\infty$\end{document} or a combination of concave and convex terms. Under some suitable assumptions, the existence of solutions is proved by using critical point theory.
引用
收藏
相关论文
共 74 条
  • [1] Benguria R(1981)The Thomas-Fermi-von Weizsäcker theory of atoms and molecules Commun. Math. Phys. 79 167-180
  • [2] Bris H(1981)Thomas-Fermi and related theories and molecules Rev. Mod. Phys. 53 603-641
  • [3] Lieb E(1998)An eigenvalue problem for the Schrödinger-Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
  • [4] Lieb EH(1984)Solutions of Hartree-Fock equations for Coulomb systems Commun. Math. Phys. 109 33-97
  • [5] Benci V(2006)The Schrödinger-Poisson equation under the effect of a nonlinear local term J. Funct. Anal. 237 655-674
  • [6] Fortunato D(2013)On nonlinear Schrödinger-Poisson equations with general potentials J. Math. Anal. Appl. 401 672-681
  • [7] Lions PL(2008)Multiple bound states for the Schrödinger-Poisson equation Commun. Contemp. Math. 10 391-404
  • [8] Ruiz D(2008)Ground state solutions for the nonlinear Schrödinger-Maxwell equations J. Math. Anal. Appl. 345 90-108
  • [9] Seok J(2010)Positive solution for some non-autonomous Schrödinger-Poisson systems J. Differ. Equ. 248 521-543
  • [10] Ambrosetti A(2004)Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations Proc. R. Soc. Edinb., Sect. A 134 893-906