Approximation of locally integrable functions on the real line

被引:0
作者
A. I. Stepanets
Wang Kunyang
Zhang Xirong
机构
[1] Ukrainian Academy of Sciences,Institute of Mathematics
[2] Normal University,undefined
关键词
Fourier Series; Entire Function; Periodic Function; Real Axis; Integrable Function;
D O I
10.1007/BF02525260
中图分类号
学科分类号
摘要
We introduce the notion of generalized\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \psi $$ \end{document}-derivatives for functions locally integrable on the real axis and investigate problems of approximation of the classes of functions determined by these derivatives with the use of entire functions of exponential type.
引用
收藏
页码:1749 / 1763
页数:14
相关论文
共 6 条
  • [1] Stepanets A. I.(1994)Approximation in spaces of locally integrable functions Ukr. Mat. Zh. 46 638-670
  • [2] Stepanets A. I.(1986)Classification of periodic functions and the rate of convergence of their Fourier series Izv. Akad. Nauk SSSR, Ser. Mat. 50 101-136
  • [3] Stepanets A. I.(1989)On the Lebesgue inequality on the classes of (ψ, β)-differentiable functions Ukr. Mat. Zh. 41 449-510
  • [4] Stepanets A. I.(1989)Deviations of Fourier sums on classes of entire functions Ukr. Mat. Zh. 41 783-789
  • [5] Stepanets A. I.(1997)Convergence rate of Fourier series on the classes of Ukr. Mat. Zh. 49 1069-1114
  • [6] Stepanets A. I.(1998)-integrals Ukr. Mat. Zh. 50 274-291