Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows

被引:0
|
作者
Qiao Liu
Yemei Wei
机构
[1] Hunan Normal University,Department of Mathematics
来源
关键词
Incompressible nematic liquid crystal flows; Navier–Stokes equations; Blow up criteria; 76A15; 35Q35; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field ∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla u$\end{document} and the gradient orientation field ∇d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla d$\end{document}. More precisely, we show that 0<T∗<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< T_{ \ast}<+\infty$\end{document} is the maximal time interval if and only if ∫0T∗∥∥∂iu∥Lxiγ∥Lxjxkαβ+∥∇d∥L∞83dt=∞, with 2α+2β≤3α+24α, and 1≤γ≤α,2<α≤+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$ \end{document} or ∫0T∗∥∂3u3∥Lαβ+∥∇d∥L∞83dt=∞,with 3α+2β≤3(α+2)4α, and 2<α≤∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$ \end{document} where i,j,k∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i,j,k\in\{1,2,3\}$\end{document}, i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq j$\end{document}, i≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq k$\end{document}, and j≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j\neq k$\end{document}.
引用
收藏
页码:63 / 80
页数:17
相关论文
共 50 条
  • [31] Blow-up of the Smooth Solution to the Compressible Nematic Liquid Crystal System
    Guangwu Wang
    Boling Guo
    Acta Applicandae Mathematicae, 2018, 156 : 211 - 224
  • [32] Blow-up criteria for the 3D liquid crystal flows involving two velocity components
    Zhao, Lingling
    Wang, Wendong
    Wang, Suyu
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 75 - 80
  • [33] Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum
    Yu, Haibo
    Zhang, Peixin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 209 - 222
  • [34] Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows
    Cavaterra, Cecilia
    Rocca, Elisabetta
    Wu, Hao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (01) : 24 - 57
  • [35] SERRIN BLOW-UP CRITERION FOR STRONG SOLUTIONS TO THE 3-D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS WITH VACUUM
    Liu, Qiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [36] Capillary Flows of Nematic Liquid Crystal
    Shmeliova, Dina V.
    Pasechnik, Sergey V.
    Kharlamov, Semen S.
    Zakharov, Alexandre V.
    Pozhidaev, Eugeny P.
    Barbashov, Vadim A.
    Tkachenko, Timofey P.
    CRYSTALS, 2020, 10 (11): : 1 - 16
  • [37] A new path to the non blow-up of incompressible flows
    Agelas, Leo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (06): : 1503 - 1537
  • [38] A family of global classical solutions to 3D incompressible nematic liquid crystal flows
    Shao, Shuguang
    Ge, Yuli
    Zhang, Yuwei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 : 343 - 350
  • [39] Strong Solutions to the Density-Dependent Incompressible Nematic Liquid Crystal Flows with Heat Effect
    Zhao, Xiaopeng
    Zhu, Mingxuan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1579 - 1611
  • [40] ON THE CAUCHY PROBLEM OF 3D NONHOMOGENEOUS INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS WITH VACUUM
    Liu, Yang
    Zhong, Xin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (11) : 5219 - 5238