共 10 条
[1]
Fisher J.W., Fatigue strength of welded A514 steel beams, Proc. Conf. Fatigue of Welded Structures, 1, pp. 135-148, (1971)
[2]
Ohta A., Sasaki E., Inagaki M., Kamakura M., Nihei M., Kosuge M., Effect of residual stresses on threshold level for fatigue crack propagation in welded joints of SM50B steel, Trans. Japan Welding Society, 50, pp. 31-38, (1981)
[3]
Sanders W.W., Decerecho A.T., Munse H., Effect of internal geometry on fatigue behavior of welded joints, Welding Journal, (1965)
[4]
Ohta A., Watanabe O., Matsuoka K., Shiga T., Nishijima S., Maeda Y., Suzuki N., Kubo T., Fatigue strength improvement by using newly developed low transformation temperature welding material, Weld. World, 43, pp. 38-42, (1999)
[5]
Ohta A., Maeda Y., Suzuki N., Fatigue strength improvement by using developed low transformation temperature welding wire and PWHT, Welding World, 44, pp. 52-56, (2000)
[6]
Ohta A., Maeda Y., Nguyen T.N., Suzuki N., Fatigue strength improvement of box section beam by low transformation temperature welding wire, Welding World, pp. 26-30, (2000)
[7]
Ohta A., Maeda Y., Suzuki N., Fatigue strength improvement of butt welded pipe by using low-temperature transformation welding material, National Conference of Japan Welding Society, 66, pp. 120-121, (2000)
[8]
Ohta A., Suzuki N., Maeda Y., Doubled fatigue strength of box welds by using low transformation temperature welding material, Properties of Complex Inorganic Solids, 2, pp. 401-408, (2000)
[9]
Ohta A., Maeda Y., Suzuki N., Fatigue life extension by repairing fatigue cracks initiated around box welds with low transformation temperature welding wire, Welding World, 45, pp. 3-8, (2001)
[10]
Kawada Y., Taira S., Tada Y., Manual for Stress Measurements, pp. 363-366, (1972)