Finite locally primitive abelian Cayley graphs

被引:0
作者
CaiHeng Li
BenGong Lou
JiangMin Pan
机构
[1] Yunnan University,Department of Mathematics
[2] The University of Western Australia Crawly,School of Mathematics and Statistics
来源
Science China Mathematics | 2011年 / 54卷
关键词
locally primitive; Cayley graphs; normal cover; 05C25; 20B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1) Γ = Kn, Kn,n, Kn,n − nK2, Kn × … × Kn; (2) Γ is the standard double cover of Kn × … × Kn; (3) Γ is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.
引用
收藏
页码:845 / 854
页数:9
相关论文
共 22 条
[1]  
Alspach B.(1996)A classification of 2-arc-transitive circulants J Algebraic Combin 5 83-86
[2]  
Conder M.(2004)Analysing finite locally Trans Amer Math Soc 356 291-317
[3]  
Marušič D.(1981)-arc transitive graphs Combinatorial 1 243-256
[4]  
Giudici M.(1993)On the full automorphism group of a graph Europ J Combin 14 421-444
[5]  
Li C. H.(2002)On finite affine 2-arc transitive graphs Discrete Math 246 197-218
[6]  
Praeger C. E.(2003)Finite locally-primitive graphs Proc London Math Soc 87 725-748
[7]  
Godsil C. D.(2006)The finite primitive permutation groups containing an abelian regular subgroup Trans Amer Math Soc 358 4605-4635
[8]  
Ivanov A. A.(2008)Finite edge-transitive Cayley graphs and rotary Cayley maps Europ J Combin 29 148-158
[9]  
Praeger C. E.(2009)Finite 2-arc transitive abelian Cayley graphs J Aust Math Soc 86 111-122
[10]  
Li C. H.(2002)Locally primitive graphs of prime-power order Discrete Math 244 417-421