Universal Moduli of Continuity for Solutions to Fully Nonlinear Elliptic Equations

被引:0
作者
Eduardo V. Teixeira
机构
[1] Universidade Federal do Ceará,
来源
Archive for Rational Mechanics and Analysis | 2014年 / 211卷
关键词
Viscosity Solution; Elliptic Operator; Source Function; Universal Constant; Harnack Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
This paper provides universal, optimal moduli of continuity for viscosity solutions to fully nonlinear elliptic equations F(X, D2u) =  f(X), based on the weakest and borderline integrability properties of the source function f in different scenarios. The primary result established in this work is a sharp Log-Lipschitz estimate on u based on the Ln norm of f, which corresponds to optimal regularity bounds for the critical threshold case. Optimal C1,α regularity estimates are also delivered when f∈Ln+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in L^{n+\varepsilon}}$$\end{document} . The limiting upper borderline case, f∈L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \in L^\infty}$$\end{document} , also has transcendental importance to elliptic regularity theory and its applications. In this paper we show, under the convexity assumption on F, that u∈C1,Log-Lip\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in C^{1,{\rm Log-Lip}}}$$\end{document} , provided f has bounded mean oscillation. Once more, such an estimate is optimal. For the lower borderline integrability condition allowed by the theory, we establish interior a priori estimates on the C0,n-2εn-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{0,\frac{n-2\varepsilon}{n-\varepsilon}}}$$\end{document} norm of u based on the Ln-ε norm of f, where ɛ is the Escauriaza universal constant. The exponent n-2εn-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n-2\varepsilon}{n-\varepsilon}}$$\end{document} is optimal. When the source function f lies in Lq, n > q > n−ε, we also obtain the exact, improved sharp Hölder exponent of continuity.
引用
收藏
页码:911 / 927
页数:16
相关论文
共 21 条
  • [11] Safonov M.V.(1934)Nonclassical Solutions of Fully Nonlinear Elliptic Equations II Mathematische Zeitschrift 38 257-282
  • [12] Nadirashvili N.(1937)Über lineare elliptische Differentialgleichungen zweiter Ordnung Studia Mathematica 5 34-42
  • [13] Vladut S.(1997)Numerische AbschŠtzungen in elliptischen linearen Differentialgleichungen Adv. Differ. Equ. 2 1005-1027
  • [14] Nadirashvili N.(2013)-Interior estimates for solutions of fully nonlinear, uniformly elliptic equations J. Math. Pures Appl.(9) 99 150-164
  • [15] Vladut S.(undefined)Sharp regularity for general Poisson equations with borderline sources undefined undefined undefined-undefined
  • [16] Nadirashvili N.(undefined)undefined undefined undefined undefined-undefined
  • [17] Vladut S.(undefined)undefined undefined undefined undefined-undefined
  • [18] Schauder J.(undefined)undefined undefined undefined undefined-undefined
  • [19] Schauder J.(undefined)undefined undefined undefined undefined-undefined
  • [20] Swiech A.(undefined)undefined undefined undefined undefined-undefined